TAITO 1982 Trade Marks of Taito America Corporation 72-00036-001 1256 Estes Avenue, Elk Grove Village, IL 60007 Telephone (312) 981-1000 Telex 25-3290 ### "ZOOKEEPER"™ UPRIGHT OPERATION, MAINTENANCE AND SERVICE MANUAL Complete with Illustrated Parts Catalog ### "ZOOKEEPER"™ UPRIGHT ### **TABLE OF CONTENTS** | 1. | " ZO (| OKEEPER''™ GAME SET-UPPage 5 | 4. ILLUSTRATIO | ON & PART LISTS25 | |----|---------------|--|----------------|--| | | 1.1 | Game Features | Figure 1 | Incandescant Panel26 | | | 1.2 | Introduction6 | Figure 2 | 8-Way Joystick27 | | | 1.3 | Game Inspection6 | Figure 3 | Control Panel | | | 1.4 | Pre-Game Installation6 | Figure 4 | Door Assembly29 | | | 1.5 | Power On/Off Switch, Interlock Switch,
Memory Protect Switch, Self Test Switch, | Figure 5 | Coin Door | | | | Volume Control, and Service Outlet | Figure 6 | Cabinet Assembly Front View32 | | | 1.6 | Electronic Acceptors7 | Figure 7 | Cabinet Assembly Rear View | | | 1.7 | Game Installation | Figure 8 | Power Supply Component Layout 36 | | | 1.8 | Self Test Procedure8 | Figure 9 | Video Processor Component Layout 39 | | 2. | MAIN | NTENANCE15 | Figure 10 | Data/Sound Processor Component Layout | | | 2.1 | Cleaning | Figure 11 | ROM/I/O P.C. Assembly Component Layout | | | 2.2 | Coin Door16 | Figure 12 | Video Rom Expansion Board | | | 2.3 | Fuse Replacement16 | Figure 13 | Coin Processor Board Layout54 | | | 2.4 | Monitor Removal16 | Figure 14 | Coin Processor Board Schematic | | | 2.5 | Cover Glass Removal17 | Figure 15 | Wiring Diagram56 | | | 2.6 | Printed Circuit Board Replacement17 | Figure 16 | Power Supply Board Schematic (Fold Out) | | | 2.7 | Power Supply17 | Figure 17 | Video Processor Board Schematic 1 of 2 | | | 2.8 | CMOS RAM19 | g | (Fold Out) | | | 2.9 | Test Points | Figure 18 | Video Processor Board Schematic 2 of 2
(Fold Out) | | 3. | | DRY OF OPERATIONS | Figure 19 | Data/Sound Processor Board Schematic (Fold Out) | | | 3.1 | General | Figure 20 | ROM/I/O Board Schematic (Fold Out) | | | 3.2 | Video Board22 | Figure 21 | Video Rom Expansion Board Schematic | | | 3.3 | Data Sound Board | | (Fold Out) | | | 3.4 | ROM I/O Board24 | | | | | 3.5 | Video ROM Board24 | | | ### LIST OF ILLUSTRATIONS ### LIST OF TABLES | Figure 1-1 | Programming Plug 6 | Table 1-1 | Self Test Switches | |-------------|---|-----------|--------------------------------| | Figure 1-2 | Power ON/OFF Switch7 | Table 1-2 | Hardware Tests | | Figure 1-3 | Interlock Switch & Memory Protect Switch7 | Table 1-3 | Video Board ROM Checksum | | Figure 1-4 | Self Test Switches7 | Table 1-4 | Video Board RAM Checksum | | Figure 1-5 | Volume Control Setting7 | Table 1-5 | Data/Sound Board ROM Checksum | | Figure 1-6 | Self Test Button8 | Table 1-6 | Screen RAM Content1 | | Figure 1-7 | Video Board (On Service Door)9 | Table 1-7 | Audit Totals12 | | Figure 1-8 | Flow Chart10 | Table 1-8 | Standard Coin Setting13 | | Figure 1-9 | Color Bar10 | Table 1-9 | Custom Coin Setting13 | | Figure 1-10 | Color Bar10 | Table 2-1 | Line Voltage | | Figure 1-11 | Color Bar11 | Table 2-2 | Secondary Fuses18 | | Figure 2-1 | Coin Door | Table 2-3 | Data/Sound Board Test Points19 | | Figure 2-2 | Fuse Replacement16 | Table 2-4 | Video Board Test Points19 | | Figure 2-3 | Monitor Removal16 | Table 3-1 | Video Board Memory Map22 | | Figure 2-4 | Cover Glass Removal17 | Table 3-2 | Register Initialization23 | | Figure 2-5 | Printed Circuit Boards17 | Table 3-3 | Data/Sound Memory Map24 | | Figure 2-6 | Power Supply17 | Table 3-4 | Decoding Jumper Location24 | | Figure 2-7 | Current Limit Adjustment18 | | | | Figure 3-1 | Clock Timing | | | | Figure 3-2 | Dual Port RAM Timing23 | | | ## Game Set-Up ### "ZOOKEEPER"™ UPRIGHT ### 1. GAME SET-UP ### 1.1 GAME FEATURES TAITO AMERICA CORPORATION'S "ZOOKEEPER" upright game is housed in a compact and highly serviceable cabinet with many added features. A larger security designed cash box has been incorporated into the design of this cabinet. By putting wheels on the cabinet, moving the game from one location to another is made much easier. The Control Panel has a polycarbonate overlay, so cigarette marks and mars can easily be wiped clean. This overlay can be replaced if necessary: The Marquee and Coverglass are made of fully Tempered Glass to minimize breakage. The Back Service Door housed all the P.C. Boards for the system making servicing of the game, if needed, much easier. Lighted instructions are provided to further enhance the game and attract players, by making the instructions easier to read. TAITO AMERICA CORPORATION proudly presents out improved Self-Test capability, making servicing of the game easier, which keeps your game up and running with less down time. ### 1.2 INTRODUCTION TAITO AMERICA CORPORATION'S "ZOOKEEPER" upright game is designed for one or two players. Players find out right off that its a zoo in there. . . and the anaimals are eating their way out! Wherever Zeke the zookeeper runs along the wall, he replaces bricks which have been chomped away. But the animals are swift and some inevitably escape. Now Zeke has to dodge or jump over them to survive--while still francically trying to rebuild the bricks. Plus, he's trying to earn bonus points by grabbing watermelons, root beers, and other goodies along the way. And all the time the fuse is burning. Next Zeke must leap from ledge to reach his girlfriend, Zelda, held hostage by a monkey who's throwing coconuts. The ledges move in oppsite directions, and if Zeke falls, its all over. If he can swing it at this stage, Zeke can make points here, too, by collecting bonus objects as he goes. The struggle seems all worthwile when Zelda is rescued. But Zeke still has to face two more brick zoos teeming with the meanest animals ever. Luckily, a net can be used to catch the escaped animals and return them to their cages--IF Zeke can reach it. As the adventures alternate, survival becomes more difficult. In each of the "brick" screens, a more challenging animals with a higher point value is introduced. And in each succeeding "ledge" screen the "ledge" screen moves faster, until they finally become invisible. With only his memory of past ledge patterns in relation to the still visible bonus objects and coconuts, Zeke must jump from one invisible ledge to save Zelda. "Escalator" screens, in which bonus zoo keepers can be one to help Zeke out, are interspersed between the other screens. Here Zeke must jump onto each escalator, till he can rescue Zelda up above. The higher he gets, the quicker the animals become. But victory is sweet when Zeke saves Zelda at last! ### 1.3 GAME INSPECTION TAITO AMERICA CORPORATION'S "ZOOKEEPER" upright game is shipped ready for operation, but a last visual check should be made to insure the game is in good condition. Please verify the following before turning the game on. Check the exterior of the game for shipping damage, chips, dents, or broken parts. - * Open the Rear Service Door and check for any interior damage. - * Make sure there isn't any damage to the wiring. - * Check Printed Circuit Boards, making sure there is no damage to the components. - * Check fuses making sure they are firmly in their holders. - * Check for loose foreign objects, especially metal objects which may cause electrical problems. - * Check Plug-in Connectors making sure they are firmly in their sockets. - * Check Self Test Switches making sure they are not damaged. The Video Monitor is properly adjusted before shipping. If there are any adjustments necessary, refer to our Video Monitor Manual (72-00035-001) This Manual contains all the Manufacturers recommendations for adjusting the Video Monitor. ### 1.4 PRE-GAME INSTALLATION The following precautions should be followed when installing the game. - Avoid rough handling of the game, the picture tube is fragile. - Install the game on a level surface. - * Avoid installing the game where it may receive excessive sunlight or heat, to protect the game from rising internal temperatures. - * Do not install in a damp or dusty location. - * For a short time after connecting the power to the game, the picture may be temporarily distorted. The monitor's purity is affected by the earth's magnetic field, causing a variation of color. By turning the game on for 10 or 15 seconds and then off for 20 to 30 minutes the automatic degaussing circuit applies a degaussing field around the edges of the monitor. Doing this several times will correct the problem. Another way to correct this problem is to purchase a degaussing coil or bulk tape eraser at any Electronics store. This will help to immediately demagnetize the Video tube. Caution must be used with a degaussing coil so the magnetic field of the degaussing coil is not allowed to become too intense at any one place on the picture tube there by causing a localized color distortion. If you move the game to another location after degaussing the problem may reappear. Refer to Monitor Manual 72-00035-001 for details. ### 1.4.1 POWER REQUIRMENTS TAITO AMERICA CORPORATION'S "ZOOKEEPER" game is shipped ready for operation at 120 or 240VAC, 60Hz with a power consumption of approximately 250 Watts. The following line voltages may be selected: 100VAC \pm 10% 50/60Hz 120VAC \pm 10% 50/60Hz 200VAC \pm 10% 50/60Hz 220VAC \pm 10% 50/60Hz 240VAC \pm 10% 50/60Hz A voltage Programming Block is located on the primary side of the Transformer to compensate for high/low conditions. (See Figure 1-1). FIGURE 1-1 PROGRAMING PLUG ### CAUTION For safe operation it is recommended the cabinet be grounded. This game is equipped with a three conductor power cable. The third conductor is the ground conductor and when the cable is plugged into an appropriate receptable, the game is grounded. The offset pin on the power
cable's three-prong connector is the ground connection. ### 1.5 POWER ON/OFF SWITCH, INTERLOCK SWITCH, MEMORY PROTECT SWITCH, SELF TEST SWITCH, VOLUME CONTROL. AND SERVICE OUTLET To minimize the hazard of electrical shock while servicing the game a Power ON/OFF Switch, and two (2) Interlock Switches are provided. Two (2) Self Test Switches, two (2) Volume Control and a Service Outlet have also been provided. (See Figures 1-2, 1-3, 1-4) & 1-5 for the location of Switches). ### 1.5.1 POWER ON/OFF SWITCH, INTERLOCK SWITCH A Power ON/OFF Switch is located in the front of the game at the left hand side of the cabinet. There is two Power Interlock Switches. one is located on the inside of the Coin Door frame and the other is located at the inside rear of the Service Door. This switch removes all the power from the game without unplugging it from the wall outlet. Power may be restored for servicing by pulling out on the Interlock Switch Button. FIGURE 1-2 POWER ON/OFF SWITCH ### 1.5.2 MEMORY PROTECT SWITCH The Memory Protect Switch is used to prevent erroneous writes to locations in the CMOS RAM which store the location program variables. FIGURE 1-3 INTERLOCK SWITCH & MEMORY PROTECT SWITCH ### 1.5.3 SELF TEST SWITCH There are two (2) Self Test Switches and four (4) positions, located on the inside of Coin Door. See Figure 1-4. The "ZOOKEEPER"™ game is capable of testing itself and provides data to demonstrate that the games circuitry and the controls are working properly. For further information on the Self Test Procedure refer to Section 1.8 and Figure 1-7. FIGURE 1-4 SELF TEST SWITCHES | SWITCH | FUNCTION | |------------------|---| | Up | Reset To Factory Setting (Reset Line Lit)
Increment Number (Variable Line Lit) | | Down | Decrement Number | | Advance Sub-Test | Move To Next Line | | Advance Test | Move To The Next Screen | **TABLE 1-1 SELF TEST SWITCHES** ### 1.5.4 VOLUME CONTROL SETTING The Volume Control Setting is located on the Data/Sound P. C. Board, which is on the Service Door. The volume increases when turned clockwise as indicated in Figure 1-5. A second volume control can be found on the inside right of the Coin Door frame. The volume increases when turned as indicated in Figure 1-5. FIGURE 1-5 VOLUME CONTROL SETTING ### 1.5.5 SERVICE OUTLET A Power Recepatacle has been provided to further aid servicing. The voltage at this receptacle will be the same as the line voltage the game is set at. ### 1.6 ELECTRONIC ACCEPTORS This game is equipped with the capability of using 12 VDC Electronic Coin Acceptors, such as Third Wave Electronics. Model TW12 or equivalent. Power for these units may be obtained from the Coin Entry Lamp terminals which provide 12 VDC. ### 1.7 GAME INSTALLATION Open the Coin Door and pull out the Interlock Switch. Turn the game on See Figure 1-3. The location name frame should be displayed. If the game is in the game mode, push the Self Test switch toward ADV Sub Test. The game will go into Self Test. If after a minute, the switch test frame is not displayed, refer to the Manual on Self Test (Figure 1-8). After the Switch Test is displayed push the Self Test Switch toward ADV four more times. Then the frame location name should then be displayed. Push Self Test Switch toward ADV Test four more times the game should be in the game mode. For more information on the options the operator can use, see Section 1.8.17 thru 1.8.21. ### 1.7.1 GAME ADJUSTMENTS There are several adjustments you can preform to make the play easier or more difficult. High Score Duration is the length of time the high score will appear on the screen. This is the column to the left. The column to the right is best keeper ever and this remains the same. Maximum Coins defines a limit for the machine, which when crossed will disable the coin slots. This will allow the location to set a limit on the amount of games a player will get if there is a line of people waiting. This value ranges from 1 to 99. However, it should not be set so close to 99 that a single coin can overflow the credits issued (maximum 99). A Free Play mode may be selected by setting maximum credits to 0. Number of Keepers this setting regulates the number of initial Zookeepers which can be set anywhere from 1 ot 99. High Score Enable if set at 1 high score enable will appear if set at 0 none will appear. Attract Sound - If the setting is set a 1 the game will have attract sound, if set a 0 there will be no attract sound. Game Mode - If this setting is set at 1 the game will be in the Cocktail Table Mode, if set to 0 the game will be in the Upright Mode. Novice Animals - This setting regualtes the speedof the animals and ranges from 1 to 99. 99 being fasest setting. Novice animals appear on screens 1 thru 5. Expert Animals - This setting regualtes the speed of the animals and ranges from 1 to 99. 99 being the fastest setting. Expert animals appear on screens 6 thru 10. No Hit Mode - If set a 1 the game will be in the No Hit Mode If set a 0 the game will be in the normal game mode. This setting is useful when servicing to advance to higer screens. Free Game Rate - It ranges from 0 to 99, with the number indicating how many games must be played before a "Free Game" bonus object will appear in a game. The 0 position disables free games. The unit is in the 0 position when recieved from the factory. ### 1.8 SELF TEST PROCEDURE ### 1.8.1 GENERAL The Self Test Procedure is performed using the two (2) Switches located on the right inside corner of the Cabinet, and the Self Test Button and the LED'S on the Video PC Board. (See Figure 1-7). FIGURE 1-7 SELF TEST BUTTON ### 1.8.2 ENTERING INTO THE SELF TEST MODE To enter the Self Test Mode, press the Advance Sub-Test Switch located on theCoin Door or the Self Test Button found near the LED display on Video Board. All the LED'S should blink on and the Hardware Tests should start. If a continual test of the Video Board is desired, press the Self Test Button twice to start the Video Test in the Auto Test Mode. In this mode, the machine will continually run the Hardware Test until powered off. If the message ''OPEN COIN DOOR TO TEST'' appears, the Coin Door must be opened or a jumper connected across J19, 1-2. This is because the CMOS RAM Test cannot be perfomed with the memory protected by the Coin Door Switch. ### **1.8.3 HARDWARE TESTS** These tests are performed in the following order: | VIDEO BOARD | DATA BOARD | |---|---| | ROM Checksum
Communications RAM
CMOS RAM
Color RAM
Screen RAM | ROM Checksum
Local RAM
Communications RAM
Handshake Test | ### **TABLE 1-2 HARDWARE TESTS** All LED values are shown Left to Right. 0 is OFF, 1 is ON and X is dependant upon the test results. ### 1.8.4 VIDEO BOARD ROM CHECKSUM The Rom Checksum calculates the checksum of each Video ROM and compares it to the checksum stored for that ROM. If it differs from the stored value, the machine will halt and the value of the ROM with the bad checksum will be shown on the LED'S. LED VALUES: TEST IN PROGRESS: 00 0001 FAILURE: 01 XXXX | | LED VALUE | VIDEO | 2732 | |---|-----------|------------|------| | | 01 0000 | A000-AFFF* | U3 | | İ | 01 0001 | B000-BFFF* | U4 | | | 01 0010 | A000-AFFF | U5 | | ŀ | 01 0011 | B000-BFFF | U6 | | 1 | 01 0100 | C000-CFFF | U7 | | 1 | 01 0101 | D000-DFFF | U8 | | | 01 0110 | E000-EFFF | U9 | | | 01 0111 | F000-FFFF | U10 | | | | | | ^{*}Alternate ROM Bank. ### TABLE 1-3 VIDEO BOARD ROM CHECKSUM If the Checksum ROM is bad, it will show U10 to be bad first. If this test fails, the ROM indicated on the LED display or the supporting circuits will need to be replaced. ### 1.8.5 COMMUNICATIONS RAM FROM VIDEO BOARD The Communications RAM Test determines the stability of memory shared by the two processors by storing a predefined series of numbers throughout the RAM, then reading it back to insure that it was stored correctly. LED VALUE: 00 0010 A failure has been detected when the machine halts with the above display. Failure of Communications RAM during Video Board Tests may result from either defective RAM circuitry or failure of the Data Board. To isolate the failure, disconnect the Data Board at P6 and re-enter the test. A failure means trouble in U3, U4 or associated circuits. Passing the retest suggests Data Board problems. ### 1.8.6 VIDEO BOARD CMOS RAM After saving values in another portion of memory, the CMOS RAM is tested in the same manner as the Communications RAM. If the CMOS RAM passes the test, all of the locations are restored to their previous values. LED VALUE: 00 0011 A failure of the CMOS RAM has been detected when the machine halts with the above LED value displayed. If this occurs U85 and U86 or associated decoding should be checked. ### 1.8.7 VIDEO BOARD COLOR RAM This tests the system Color RAM by storing predefined sequences of numbers in the Color RAM, then reading them back while testing for accuracy. LED VALUE: 00 0100 A failure is indicated by the processor halting with the above value displayed on the LED'S. This signifies the need to check U56, U57 and associated multiplexing and decoding. ### 1.8.8 VIDEO BOARD SCREEN RAM The Screen RAM is tested by writing a pattern to each page on the screen. The results of these writes is then compared to the original pattern. Any discrepancy causes the machine to halt with the LED displaying the faulty RAM. | LED VALUE: | TEST IN PROGRESS: | 00 0101 | |------------|-------------------|---------| | | FAII URF | 1X XXXX | | LED VALUE | RAM | 11 XXXX | RAM | |-----------|-----|---------|-----| | 10 0000 | U33 | 11 0000 | U66 | | 10 0001 | U32 | 11 0001 | U65 | | 10 0010 | U31 | 11 0010 | U64 | | 10 0011 | U30 | 11 0011 | U63 | | 10 0100 | U29 | 11 0100 | U62 | | 10 0101 | U28 | 11 0101 | U61 | | 10 0110 | U27 |
11 0110 | U60 | | 10 0111 | U26 | 11 0111 | U59 | | 10 1000 | U17 | 11 1000 | U48 | | 10 1001 | U16 | 11 1001 | U47 | | 10 1010 | U15 | 11 1010 | U46 | | 10 1011 | U14 | 11 1011 | U45 | | 10 1100 | U13 | 11 1100 | U44 | | 10 1101 | U12 | 11 1101 | U43 | | 10 1110 | U11 | 11 1110 | U42 | | 10 1111 | U10 | 11 1111 | U41 | TABLE 1-4 VIDEO BOARD RAM CHECKSUM Upon failure of a screen RAM, locate the problem RAM and replace it. Exchange suspected RAM with a known good location to determine if the problem moves with the RAM IC or whether the problem is in the supporting circuitry, further testing can be done with the Color Bar Test. If this Diagnostic appears to halt without indicating a RAM failure (00 0101 on LED'S), a failure to begin the next test (Data Hardware) is indicated. The interconnection to the Data Processor must be in place and the Data Processor must be functional to continue. FIGURE 1-7 VIDEO BOARD (ON BACK SERVICE DOOR) ### 1.8.9 DATA/SOUND BOARD SELF TESTS DATA HARDWARE (ROM CHECKSUM) The ROM Checksum calculates the checksum of each Data ROM and compares it to the checksum stored for that ROM. If it differs from the stored value, the machine will halt and the value of the ROM with the bad checksum will be shown on the LED'S. LED VALUE: TEST IN PROGRESS: 00 0110 FAILURE: 01 XXXX | | | T | | |---|-----------|-----------|------| | | LED VALUE | DATA | 2732 | | | 01 1000 | 8000-8FFF | U12 | | l | 01 1001 | 9000-9FFF | U13 | | | 01 1010 | A000-AFFF | U14 | | | 01 1011 | B000-BFFF | U15 | | İ | 01 1100 | C000-CFFF | U16 | | ļ | 01 1101 | D000-DFFF | U17 | | | 01 1110 | E000-EFFF | U18 | | | 01 1111 | F000-FFFF | U19 | TABLE 1-5 DATA/SOUND BOARD ROM CHECKSUM If this test fails in the field, the bad ROM will need to be replaced. **NOTE:** To aid the technician in diagnosing difficult boards, hold the Self Test Button located on the Video Board depressed while the game is being powered on. This will cause the game to enter the diagnostic mode directly upon power up, accessing only one ROM per processor. Games which otherwise will not execute the on board diagnostics will thereby provide more information on ROM failure. ### 1.8.10 DATA/SOUND BOARD LOCAL MEMORY The Data processor uses a known sequence of numbers to test the bits in its Local Memory. If a bad bit is found the machine will halt with the following display. LED VĂLUE: 00 0111 ### 1.8.11 COMMUNICATIONS RAM ADDRESSING The function of this test is to ensure that both the Data and the Video Processor address the Communicatons RAM in the same manner. The Data Processor requests the Video Processor to fill the RAM with a known pattern then, the Data Processor compares the result to the expected pattern. If it does not match, one of the processors is probably decoding the address incorrectly as the RAM itself was previously tested for stability by the Video Processor. The machine will halt with the following display. LED VALUE: 00 1000 ### 1.8.12 DATA/VIDEO HANDSHAKE This test ensures that the Data Processor can send priority commands via interrupts to the Video Processor. The Video Processor is halted, then restarted by the data Processor after the proper command acknowledgements are received. The machine will halt with the following display. LED VALUE: 00 1001 ### 1.8.13 SWITCH TEST This screen is used to determine all switches are working order before entering the switch dependent self-test screens. The Wiring Diagram supplied with each game will indicate the number associated with a particular switch. The switch numbers appear in green if the switch is closed and white if it is open. The Advance Test Switch (Switch number 9) is always red in order to set it apart from the others on the screen, switch 29, 30, 31, 32 are not used & stay green. The user should check all other switches before pressing the Advance Test Switch, as this would move him to the next screen. In addition to the switches required, by the game, the User should be sure to test the Advance Sub-Test, UP and DOWN Switches located on the Coin Door, these switches are used to move about in the Self-Tests Screens. To advance to the next screen, activate the Advance Test Button located on the Coin Door. FIGURE 1-8 FLOW CHART ### 1.8.14 COLOR BALANCE AND INTENSITY ADJUST SCREEN This screen is comprised of two sections. The first section provides a method for adjusting the intensity level of each color gun, and achieving an initial color balance. Three squares, one blue, one green and one red, are drawn along the top of the screen at minimum intensity or brightness. The color guns should be adjusted so that these squares are barely visible and of equal intensity. To complete the color adjustments, a gray scale is provided at the bottom of the screen. Fine tune the color balance with this scale, the double check that the squares at the top are barely visible. To advance to the next screen, activate the Advance Test Switch located on the Coin Door. ### 1.8.15 COLOR BARS The CPU divides the screen RAM into 16 areas corresponding to 16 bars on the screen. Each area is written with a data value from the Table 1-7. Each value exercises one bit in the screen RAM. The Color RAM is written with a pattern which outputs each data value with a recognizable color from the table. All other data values are coded black. This results in a normal screen of 16 colors bars per the following Figure. ### **COLOR BAR DIAGNOSTIC** NORMAL FIGURE 1-9 COLOR BAR ### COLOR BAR DIAGNOSTIC BIT 03 STUCK LOW IN 1-BANK FIGURE 1-10 COLOR BAR ### SCREEN RAM DATA CONTENT | ' | SCREEN RAM CONTENT
COLOR RAM ADDRESS | | | | | | | | | |---|---|------------|------|-------------|------|---|--|--|--| | | Bar # | Color | nary | Bit Tested_ | | | | | | | | 1 | Red | 01 | 0000 | 0001 | 0 | | | | | | 2 | Orange | 02 | 0000 | 0010 | 1 | | | | | | 3 | Yellow | 04 | 0000 | 0100 | 2 | | | | | | 4 | Green | 08 | 0000 | 1000 | 3 | | | | | | 5 | Blue Green | 10 | 0001 | 0000 | 4 | | | | | | 6 | Blue | 20 | 0010 | 0000 | 5 | | | | | | 7 | Violet | 40 | 0100 | 0000 | 6 | | | | | | 8 | White | 80 | 1000 | 0000 | 7 | | | | | | 9 | Red | FE | 1111 | 1110 | 0 | | | | | ļ | 10 | Orange | FD | 1111 | 1101 | 1 | | | | | | 11 | Yellow | FB | 1111 | 1011 | 2 | | | | | 4 | 12 | Green | F7 | 1111 | 0111 | 3 | | | | | İ | 13 | Blue Green | EF | 1110 | 1111 | 4 | | | | | | 14 | Blue | DF | 1101 | 1111 | 5 | | | | | | 15 | Violet | BF | 1011 | 1111 | 6 | | | | | - | 16 | White | 7F | 0111 | 1111 | 7 | | | | | ļ | None | Black | XX | XXXX | XXXX | | | | | TABLE 1-6 ### **COLOR BAR DIAGNOSTIC** BIT 5 STUCK HIGH ALL BANKS FIGURE 1-11 COLOR BAR If the Self-Test passes, errors in those circuits which affect CPU access are ruled out. This leaves latches U91, U94, shift registers U95, U96 and U105-109, direction select U81 and U104 and the CR side of select U81 and U104 and CR side of the Color RAM MUX U55, U73, and U74. Stuck bits may be indentified by observing abnormal bars. A bit stuck high will result in black bars (two bit high) on the left or top half of the screen except for the bar associated with the stuck bit. On the right of bottom half, the bar associated with the stuck bit will be black. The converse is true of a bit stuck low. An error across the entire bar indicates an error in the shift registers, direction select, or color RAM MUX which affects every pixel. Lines of error running crosswise to the bars indicate an error in one bank of RAM if every eighth pixel. To move to the next screen, activate the Advance Test Button. If self test fails, the color bars still may by useful. This screen may now be entered without going through on-board self test. Use "Advance Test" to enter the high score screen then "Down" to enter the Switch Test. Advance Test may then be used to access color bars. ### 1.8.16 ALIGNMENT AND CONVERGENCE TEST This screen is provided to align the color guns and correct the convergence on the screen. The screen is composed of a white grid. Adjust the screen width and length so that the rectangle is slightly within the boundaries of the tube. The adjustment is to be made on the center of the lines which make up the rectangle. The corners of the rectangle will extend beyond the shadow mask. A grid of white squares is provided to help detect and correct any convergence problems the tube may have. Adjust the monitor until the squares are of equal size throughout the screen. To advance to the next screen, activate the Advance Test Button on the Coin Door. ### 1.8.17 LOCATION NAME This screen allows the user to program the location name. Alpha, numerical and miscellaneous charecters are provided. Use the Advance Sub-Test Button to move to the next character position indicated in green. Use the UP/DOWN switch to reach desired character, set by depressing Advance Sub-Test Button. Continue until location name is completed, depress Advance Test Button to advance to next screen. ### 1.8.18 LOCATION PROGRAMMING This screen allows the location to define various game control parameters. The User selects the line to be changed by using, the Advance Sub-Test Button until the desired line is changed to green. The value associated with this line is then modified with the UP or DOWN switches. If the machine is to be reset to the factory setting, use the Advance Sub-Test Button until the reset line is lit in green, the press the UP switch. The values will be reset and the user will be placed back on the first line for further adjustments. Advance test will move to the next screen at any time. Refer to Para 1.7.1 for setting. ### 1.8.19 HIGH SCORE TO DATE SCREEN This screen shows the scores and initials of the players with the ten highest scores. It is used as an audit for the game. To reset the values, press the UP Switch. This will also set the initials to the default values. When the UP Button is activated it resets to default scores. To move to the next screen, activate the Advance Test Button in the bottom
right inside corner of cabinet. ### 1.8.20 AUDIT TOTALS This screen provides the audit totals for the game. Once they are recorded, they may be zeroed by pressing the UP Switch. The following audits are kept. | Total Credits | The total number of paid credits issued. | |--------------------|--| | Total Gredits | This total is never zeroed, but it will | | | wrap around to zero when its total reaches | | | 1,000,000. The only time this total can | | | be zeroed is by physically removing the | | | battery or jumper W1, while the power | | | is off. | | Left Coins | The number of coins dropped into the | | | left slot. | | Center Coins | The number of coins dropped in the | | | center slot. | | Right Coins | The number of coins dropped into the | | | right slot. | | Paid Credits | The number of credits issued for coins. | | Awarded Credits | The number of credits awarded by the | | | game. | | % Free Plays | Awarded credits / paid credits + awarded | | | credits *100 | | Minutes Played | Number of minutes the game has been in | | | play mode. | | Minutes Awarded | Number of minutes the game has been in | | | extended or awarded play. | | % Free Time | Awarded minutes / minutes played *100. | | Average Game (Sec) | Minutes played / paid credits + awarded | | | credits *60 | | High Scores | The number of times which a player | | | scored high enough to bump someone else | | | from the high score list. | The UP Switch is used to zero the audits. To advance to the next screen, activate the Advance Test Button on the Coin Door. Total credits will not turn to zero unless battery voltage is removed from CMOS memory. ### 1.8.21 COIN SLOT SELECTION This screen allows the user to either select a standard coinage setting for the game or program his own. If a standard setting is desired, use the UP and DOWN Switch to adjust the coinage setting while it is lit in green. The values for the variable will change as this number is altered. When the right selection is set, use Advance Test to return to the game. If a non-standard setting is desired, use Advance Sub-Test Switch to move down to the variables so that they may be programmed individually. Once this switch is pressed, the standard setting number is set to zero to show that the location has supplied their own settings. As the lower variables are unchanged, the user may minimize his effort by first selecting a setting close to the one he desires. Once in the programming mode, the Advance Sub-Test Switch is used to move among the variables. It will also take you back to the standard settings, if you press it by mistake. The UP and DOWN Switches are used to increment or decrement the values. Advance Test Switch will return to the game when pressed. The coin multiplier tells how many coin units are issued for each coin through a particular slot. Coin units for credit show the number of units necessary before a credit is issued. Coin units for bonus gives the number of units necessary before a bonus credit is issued. Minimum coin is an optional value which will keep the credits from accumulating until the specified minimum amount of coin units is reached. It is not used in any of the standard settings. ### 1.8.22 CMOS MEMORY FAILURE If the message "Memory Failure - Service Required" appears on the screen, the CMOS RAM which stores all of the location programming has failed. All the values stored in the RAM are set back to factory defaults. This condition probably indicates a battery failure, or a failure of U85 or U86. Refer to Section 2 on Maintenance 2.7.6 CMOS RAM. ### STANDARD COIN SETTINGS ### TABLE 1-8 | | | Standard Setting | Left coin slot multiplier | Center coin slot multiplier | Right coin slot multiplier | Coin units for credit | Coin units for bonus | Minimum coin units | |----------------------|---------------------|------------------|---------------------------|-----------------------------|----------------------------|-----------------------|----------------------|--------------------| | COIN DOOR MECHANISMS | CREDIT/MONEY | | | | | | | | | STANDARD | 1/.25, 4/\$1 | 01 | 01 | 04 | 01 | 01 | 00 | 00 | | | 1/.50, 3/\$1, 6/\$2 | 02 | 01 | 04 | 01 | 02 | 04 | 00 | | | 1/.50 | 03 | 01 | 04 | 01 | 02 | 00 | 00 | | 1 DM, 5 DM | 1/1DM, 6/5DM | 04 | 06 | 00 | 01 | 01 | 00 | 00 | | 1 FRANC, 5 FRANC | 1/2F, 3/5F ONLY | 05 | 01 | 16 | 06 | 02 | 00 | 00 | | 25 CENTS, 1 GUILDER | 1/25, 4/1G | 06 | 01 | 00 | 04 | 01 | 00 | 00 | | 5 FRANCS, 10 FRANCS | 1/5F, 2/10F | 07 | 01 | 00 | 02 | 01 | 00 | 00 | | | 1/10F | 08 | 01 | 00 | 02 | 02 | 00 | 00 | | 1 FRANC, 2 FRANC | 2/1F, 5/2F | 09 | 00 | 04 | 01 | 04 | 00 | 00 | | 1 UNIT, 5 UNITS | 1/2, 3/5 | 10 | 01 | 00 | 06 | 02 | 00 | 00 | | TWIN COIN | 1/1 COIN | 01 | 01 | 04 | 01 | 01 | 00 | 00 | | | 1/2 COINS | 03 | 01 | 04 | 01 | 02 | 00 | 00 | ### **CUSTOM COIN SETTING** ### TABLE 1-9 | | INDEE . O | | | | | | | | |----------------------|------------------------|------------------|---------------------------|-----------------------------|----------------------------|-----------------------|----------------------|--------------------| | | | Standard Setting | Left coin slot multiplier | Center coin slot multiplier | Right coin slot multiplier | Coin units for credit | Coin units for bonus | Minimum coin units | | COIN DOOR MECHANISMS | CREDIT/MONEY | | | | | | | | | STANDARD | 1/.25, 5/\$1 | 00 | 01 | 04 | 01 | 01 | 04 | 00 | | | 2/.50, 5/*1 | 00 | 01 | 04 | 01 | 01 | 04 | 02 | | | 2/.50, 4/\$1 | 00 | 01 | 04 | 01 | 01 | 00 | 02 | | | 1/.50, 3/\$1, 4/\$1.25 | 00 | 03 | 12 | 03 | 04 | 15 | 00 | | | 1/.50, 3/\$1, 7/\$2 | 00 | 12 | 48 | 12 | 14 | 96 | 24 | | 25 CENTS, 1 GUILDER | 1/.25, 5/1G | 00 | 01 | 00 | 04 | 01 | 04 | 00 | | 100 LIRE, 200 LIRE | 1/200 LIRE | 00 | 01 | 00 | 02 | 02 | 00 | 00 | | TWIN COIN | 1/3 COIN, 2/5 | 00 | 02 | 00 | 02 | 05 | 00 | 00 | | 1 UNIT, 5 UNITS | 1/1, 5/5 | 00 | 01 | 00 | 05 | 01 | 00 | 00 | | | 1/3, 2/5 | 00 | 02 | 00 | 10 | 05 | 00 | 00 | | | | | | | | | | | ### Maintenance ALL GAMES REQUIRE A CERTAIN AMOUNT OF MAINTENANCE TO KEEP THEM IN GOOD WORKING ORDER. A PERIODIC CHECK OF THE MECHANICAL CONTROLS WOULD BE BENEFICAL TO THE SUCCESS OF YOUR GAME. 2 ### 2. MAINTENANCE AND REPAIR ### 2.1 CLEANING The exterior of the game, all metal parts and all plastic parts can be cleaned with a non-abrasive cleanser. Caution should be used when cleaning the glass, a dry cloth can cause scratches and result in a foggy appearance. ### 2.2 COIN DOOR The Door used in "ZOOKEEPER" UPRIGHT game needs little or no maintenance, See Figure 2.1. If desired a special coin mechanism cleanser, that leaves no residue, can be obtained from your distributor. Refer to the manufacturers documenation of additional information is needed. FIGURE 2-1 COIN DOOR ### 2.3 FUSE REPLACEMENT This game contains eight (8) fuses. Five (5) fuses can be found on the Regulator PCB and two (2) can be found on the Transformer Assembly. One (1) fuses is located at the bracket where the AC line cord comes into the cabinet. See Figure 2-2 for locations of these fuses. FIGURE 2-2 FUSE REPLACEMENT ### 2.4 MONITOR REMOVAL If you need to remove the Video Monitor, follow the instructions listed below: ### **CAUTION** It is recommended the game be left disconnected for at least one hour before removing the Video Monitor. This will probably discharge the Video tube but EXTREME CAUTION is still necessary. - 1. Disconnect power from the line voltage. - 2. Remove the Control Panel by releasing the two spring loaded latches. - 3. Disconnect the Wiring by separating connector V and all wire to the CRT. - 4. Remove (2) rear carriage bolts and lower Monitor on side rails. - 5. Remove (4) bolts, one on each corner of the Monitor Bracket, slide Monitor out toward you. ### **CAUTION** Use EXTREME CAUTION and do not touch electrical parts of the Monitor Yoke area with your hands or with any metal object in your hands! High voltages may exist in any Monitor, even with power disconnected. FIGURE 2-3 MONITOR REMOVAL ### CAUTION Caution must be used with a degaussing coil so the Magnetic field of the degaussing coil is not allowed to become too intense at any on place on the picture tube thereby causing a localized color distortion. If you move the game to another location after degaussing the problem may reappear. Refer to Monitor Manual 72-00035-001 for further details. ### 2.5 COVER GLASS REMOVAL To remove the Cover Glass follow the instructions listed below: - 1. Remove the control panel by reaching up through the Coin Door and unlatching the latching clamps. - 2. Remove the (3) Screws on the Cover Glass Bracket. - 3. Hold Glass firmly slide out from the rear. - 4. Be sure you are holding the glass firmly to ensure against any chipping or breakage. FIGURE 2-4 COVER GLASS REMOVAL ### 2.6 PRINTED CIRCUIT BOARD REPLACEMENT You may wish to remove "ZOOKEEPER" printed circuit board, Video Processor (08-00001-001), Data/Sound Board (08-00122-001), ROM/IO Board (08-0003-001), Coin Door Processor (08-00039-006) or Video Extension Board (08-00112-001) for servicing. Refer to Figure 2-5. "ZOOKEEPER"™ Printed Circuit Boards (PCB) are located on the inside of the service door for easy access. To remove the boards the following steps should be followed: - Open the Service Door, the power will automatically be removed by the Interlock Switch located on the inside of the door frame. - 2. Disconnect the connectors from the boards. - 3. Remove nuts from around shield and lift off shield. - 4. Disconnect the ribbon cable, connecting the boards by spreading eject latches on the connector. - 5. Remove the screws for the boards you wish to remove. FIGURE 2-5 PRINTED CIRCUIT BOARD ### 2.7 POWER SUPPLY The Power Supply produces all the necessary game voltage requirements. Refer to Figure 2-6 and the Power Supply Schematic while reading the following circuit description. FIGURE 2-6 POWER SUPPLY ### **2.7.1 AC INPUT** The AC Input Voltage is applied to
the main Power Supply via the AC Line Cords, Line Filter, Line Fuse, Power Switch and Interlock Switch. Different Line Cord are used for 120V and for 240V. The Line Fuse is located on the Line Cord Assembly near the Strain Relief. A Voltage Programming Block is located on the primary side of the Transformer to compensate for high/low voltage conditions. The following line voltages may be inserting the appropriate Programming Plug. | LINE VOLTAGE | | LINE FUSE | |---------------|---------|-----------| | 100 VAC ± 10% | 50/60Hz | 3 AMP | | 120 VAC ± 10% | 50/60Hz | 3 AMP | | 200 VAC ± 10% | 50/60Hz | 1.5 AMP | | 220 VAC ± 10% | 50/60Hz | 1.5 AMP | | 240 VAC ± 10% | 50/60Hz | 1.5 AMP | **TABLE 2-1 LINE VOLTAGE** ### **CAUTION** For continous protection against fire hazard, replace only with a fuse of the same type having the same electrical rating. There are five secondary sources. Three go to the Regulator PCB source voltage for +5VDC, +12VDC, -12VDC, and -5VDC. The other two are fused 6.3VAC used for the incandescent lighting and fused 120VAC used for the monitor, and in certain models for a fluorescent lamp and fan. These secondary fuses are located on the bracket adjacent to the Power Transformer. | Circuit | Secondary Fuse | |---------|----------------| | 120VAC | 2.0AMP SLO-BLO | | 6.3VAC | 2.5AMP | **TABLE 2-2 SECONDARY FUSES** ### 2.7.2 -5VDC AND -12VDC REGULATORS The AC Input for the negative voltages comes into the Regulator PCB on J1-5 and J1-6 from the Transformer. Fuse F3 protects against short circuits. The AC voltage is then full wave rectified by BR3 and filtered by C16. The raw DC is then applied to Reg 1, a three terminal -12V Regulator. The output of this Regualtor is the -12VDC output for the system and is also the input voltage for Reg 2, a -5V Regulator. The output of this Regulator is the -5VDC for the system. Capacitors C17, C18, C19 are to improve the transient response and stability of the minus voltage regulator. Diodes D8 and D9 provide protection against C18 and C19 being shorted through the Regulator. Resistors R34 and R35 provide current limiting for LED'S 3 and 4 which will light when there is voltage present at the regulation outputs. ### 2.7.3 +5VDC REGULATOR The AC Input for the +5VDC Regulator circuit comes in on J1-1 and J1-2, via F1 into BR1. BR1 full wave rectifies the AC Input. This raw DC is applied to the collectors of (2) series pass transistors, mounted on the Heat Sink Assembly. The regulation is done by U3, which is a voltage regulator whose output controls the gain of Q5, which in turn controls the gain of the series pass transistors. The emitter of the series pass transistor returns to the Regulator PCB and through R11 and R12, which serve to force current sharing between the series pass devices. The voltage at the output of R11 and R12 is the +5VDC for the system. R16 and R18 are voltage set and current foldback adjustments respectively. Q8, D3 and R20 comprise a SCR-Type Crowbar Circuit which will trigger when the DC output voltages rise above 5.8V. Once the SCR fires, the Power Supply has to be turned off to reset the device. R19 is a current limiter for the voltage indicator LED 1. R16 is used to set the output voltage of the Regulator. C8, D2, R13 and Q4 delay the start-up of the 5V Regulator to allow the -5VDC Regulator to stabilize first. ### 2.7.4 +12VDC REGULATOR This circuit is essentially the same as the 5V Regulator described above. The AC current comes in on J1-3 and J1-4, via fuse F2 into BR2. The AC is rectified by BR2 and filtered by C9. The raw DC is fed to a single series pass transistor on the Heat Sink Assembly and also powers the $\pm 12V$ and $\pm 5V$ Regulator. R28 and R25 are voltage set and current foldback and factory adjusted to 12 Volts $\pm .25V$ at 4 AMPS. D7, Q9, and R31 are SCR Crowbar Circuits which trigger at 13VDC output which causes supply to go into current foldback. There is an RC delay as in the 5V circuit to delay the $\pm 12V$ rise time. ### 2.7.5 RESET CIRCUIT The reset circuit will output a 2sec active low MRST pulse at J3-14 and J4-14 when the power is first turned ON and whenever power fails for more than 35ms. The reset circuitry is comprised of a Dual Timer (556) and an optical coupler across an AC secondary. The output of U1 is the input to one half of the 556 which is configured as a missing pulse detector. C1 and R3 determine the time before the output goes active. This is set for about 35ms. When two or more cycles are missing, the output of the first timer triggers the second timer which drives the MRST low for about 2 seconds. The timer constant for the second timer is set by R4 and C6. Power on reset is generated by C4, and R39 and D12 on the trigger input of the second timer. Q3 inverts the signal out of the 556 so it is active low. R7 insures MRST is low while the power is rising. ### 2.7.6 POWER SUPPLY ADJUSTMENTS **VOLTAGE** Adjust voltage on +5V and +12V for +5.00V to +5.05V and +12.00V to +12.05V. **CURRENT LIMIT** Adjust control (51, 121) counterclockwise until voltage just changes then turn control clockwise until voltage goes back to original value. With pointer, mark position of arrow on potentionmeter then turn control until beginning of 1st notch is aligned with the pointer. On the controls with the Blue Disk turn approximately 30°. FIGURE 2-7 CURRENT LIMIT ADJUSTMENT If voltage adjustment will not bring voltage up, set current limit adjustment to ½ value. ### 2.8 CMOS RAM If when powering the game up, it will not coin up because the battery is low. The following procedure should be followed. Open the Service Door of the game and pull out Interlock to power game back up. Pull out the W1 jumper next to the battery on the Video Board (Blue jumper). Push Interlock back in. Wait 2 minutes, power back on and insert W1 back in. If the Location Name frame does not come on the CRT, remove W1 again and power down. Short pins 18 and 9 on U85, power back on and insert W1 back in. Leave the game on for 12 hours. If this procedure does not work when you turn the game back on the battery may need to be replaced. ### 2.9 TEST POINTS The following is a list of Test Points to be used when troubleshooting. ### DATA/SOUND | DTP1 E DTP2 Q DTP3 LIC DTP4 SA 15 DTP5 DA 15 DTP6 Voice Clock DTP7 SBSC DTP8 DBSC DTP10 +5V DTP11 Ground | (Master Clock) (Master Clock) Last Interlock Complete (Address Line) (Address Line) (Sound Processor Data Enable) (Data Processor Data Enable) | |--|--| |--|--| TABLE 2-3 DATA/SOUND BOARD TEST POINTS ### **VIDEO BOARD** | VTP1
VTP2
VTP3
VTP4
VTP5
VTP6
VTP7
VTP8 | Invert
10 MHZ
VQ
VE
LIC
Busy
VBSC
VA 15 | (Clock Video Processor)
(Clock Video Processor)
Last Instruction Complete
(Video Data Enable)
(Address Line) | |--|--|--| |--|--|--| **TABLE 2-4 VIDEO BOARD TEST POINTS** If you ground any Data Enable Test Point (DTP7, DTP8, VTP7) the related processor will receive No-OP Instructions and the address line will act line a 16 Bit Counter. # Theory Of Operation THIS SECTION PROVIDES A TECHNICAL DESCRIPTION OF "ZOOKEEPER" GAME. THE GAME ELECTRONICALLY CONSISTS OF PRICTED CIRCUIT BOARDS, TV MONITOR, POWER SUPPLY, AND SPEAKERS WHICH ARE DESCRIBED IN DETAIL IN THE FOLLOWINT TEXT. 3 ### 3. THEORY OF OPERATION ### 3.1 GENERAL The TAITO AMERICA CORPORATION'S arcade video system game is an advanced multiprocessor based circuit utilizing the Motorola 6809E microprocessor. The system is organized in three logical blocks: - A. The Data Processor, which supervises the operation of the entire system. - B. The Video Processor, which performs all screen based functions, such as playfield image motion, line drawing, etc. - C. The Sound Processor, which generates sounds under the direct control of the Data Processor. In order to facilitate easy inter-system communications, the Data and the Video Microprocessors run synchronously using clock and timing signals developed on the Video Board. For this reason, discussion will begin by examining the Video Board. ### 3.2 VIDEO BOARD ### 3.2.1 SYSTEM CLOCK The fundamental system clock is developed by the 20MHz crystal, inverters U24 and U39, and components. The 20MHz signal is divided by the high speed flip flop U38 to obtain a 10MHz main clock with a precise 50 percent duty cycle. This 10MHz signal generates all other fundamental timing signals for the video system, including the Data Processor. IC23 divides the 10MHz signal to obtain 5MHz, 2.5MHz and CCLK, and their respective inversions. IC's U9, U37, and U38 combine these signals, presenting them to U25, which synchronizes the output signal to the system 10MHz clock. This
circuit produces waveforms whose active edges are synchronized to 15ns worse case, 2ns average. The characteristics of the clock circuit may be noted by reference to the Timing Diagram, Figure 3-1. FIGURE 3-1 CLOCK TIMING ### 3.2.2 SCREEN RAM The Video Processor controls a Screen RAM of 256 x 256 pixels with 8 bits per pixel. In order to access of this information, the screen is divided into two pages, top and bottom, chosen under software control. These pages are both addressed at 0000 - 7FFF with address 0 corresponding to the lower left corner of the screen (horizontal scan). All CRT accesses to this RAM are transparent to the processor and the RAM may be read or written any time. The timing of the Screen RAM and the eventual scan is controlled by a 6845/6545/46505 CRT Controller Chip. It's address outputs are gated by U19, U20, U50, and U51 for inversion when when a cocktail table mode. The scan addresses are multiplexed with the address present on the microprocessor data bus by U35, U52, U53, and U54 for standard RAS-CAS accessing. The desired bank of memory is addressed by U87, a one of four decoder. Data written into the Screen RAM comes directly from the system data bus, buffered by 33 Ohm resistors. If a processor read is taking place, the data is placed on the data bus by U77, U78, U79, and U80. Screen reads are latched by 374's U91, U92, U93, and U94. A second screen read is then performed, and this data, together with the data from the screen read previously performed and latched by the 374's is presented to the eight (8) 74LS299 shift registers. These registers may be shifted in either direction for cocktail table implementation. The byte stream then proceeds to the Color RAM. | | ADDRESS | VIDEO BOARD MEMORY MAP | |----------|---------|---------------------------------------| | A. | 8000 | Dual Port RAM | | В. | 8400 | CMOS Battery Backup Memory | | C. | 8800 | LED Output and Color RAM Page Select | | | 8801 | EPROM Page Select | | D. | 8000 | Data FIRQ Activation Address | | | 8C01 | Video FIRQ Deactivation Address | | E.
F. | 9000 | Color RAM | | F. | 9402 | Address Latch Hi-Byte | | | 9403 | Address Latch Lo-Byte | | | 9400 | Address Latch Indexed Screen Location | | G. | 9800 | Scan Line Readback Location | | H. | 9000 | CRT Controller Base Address | TABLE 3-1 VIDEO BOARD MEMORY MAP ### 3.2.3 DUAL PORT RAM This RAM may be accessed in its entirety by either processor. This is arbitrated as follows: - The Data Processor runs in quadrature with (one quarter clock cycle ahead of) the Video Processor. In other words, E is inverted for use as DQ, and Q becomes DE. Refer to Timing Diagram. Figure 3-2. - The Data Processor, by nature of this timing, accesses the Dual Port RAM ¼ cycle before the Video Processor. At this point the Video Processor is guaranteed to not be accessing the RAM. The Data Processor access is flagged by U36, which causes a cycle to be stolen from the Video Processor's main clock, VQ and VE. - 3. The Video Processor is unable to access the Dual Port RAM unless the Data Processor is not accessing it as it will not be receiving clocks during that time. The cycle steal is accomplished by the generation of signal DPMUX by U36. This signal directly steals the cycle, and also folds over multiplexers U5, U6, and U21, switching the address lines, R/W and gating signals. U1 and U2 gate the data to or from the desired processor. U22 insures that no spurious writes are generated during foldover. FIGURE 3-2 DUAL PORT RAM TIMING ### 3.2.4 CMOS RAM The CMOS RAM is implemented for use as both a battery back-up storage area and a work area for the Video Processor. The gating U100, U101, U102, and U103 insure that writes to the block RAM from \$8700 - 87FF cannot be performed unless the Coin Door is open (J19-2 grounded). The 3.6V NiCAD battery is trickle charged by Q8, R64, and R65 when the system is powered. When turned off, supply current for U85, U86, and U100 is provided by this battery. U100 is included to solidly gate the MRST signal and prevent invalid operations during power Up and Down. LED and Color RAM Page Latch, U72 is addressed at address \$8800. The upper six bits drive LED'S on the circuit board for diagnostics which cannot be done through the screen. The lower 2 bits select the Color RAM page and will be discussed later. ### 3.2.5 BI DIRECTIONAL FIRQ CAPABILITY To provide for immediate inter-system communication on demand a Bi-Directional FIRQ Capability has been provided. Any access of address \$8C00 by the Video Processor will generate a FIRQ to the Data Processor. Any access of \$8C01 by the Video Processor will remove a FIRQ generated by the Data Processor to the Video Processor. This is accomplished by U7, U8, and U9. ### 3.2.6 COLOR RAM The Color RAM is used as a translation matrix so that a number of different pixel values may access a given color, or to change the color of a given area of the screen without rewriting the Screen RAM. The serial bit stream, eight bits wide, comes from the shift registers of the Screen RAM to be presented to multiplexers U55, U73, and U74. These select between the Video Processor bus and the serial bit stream. As processor access times are considerably greater than the basic bit time (200ns), it is necessary to access this register only during retrace times. Bus read/write occur through U75, and serial output is latched by U76. This Data Stream is converted to a color pallet of 64 colors and four intensities. When the serial bit is selected for access, the two high order bits are provided by the LED output latch. This allows the Programmer to select between four pages of RAM rapidly. ### 3.2.7 ADDRESS LATCH CIRCUITRY Two methods of Screen Memory Address are provided: - 1. A 16 bit address may be written into latch U70 and U71 addressed at \$9402 and \$9403. The addressed location may be accessed by reference to location \$9400. - 2. The high order bit of the latch selects one of two pages which may be directly addressed by reference to locations \$0000 \$7FFF. U36, U70, and U71 latch the address. U36 is used in conjunction with U70 as U70 and U71 are tri-stated when inactive. The screen address deposited on the LA bus by U84 and U98 for Processor Bus accesses, and by U70 and U71 for latched address. Decoding is performed by U87 and U88. ### 3.2.8 SCAN LINE READBACK When read, this location is the number of the scan line currently being drawn by the beam. U34 latches the last row address drawn, and U101 prevents erratic updating at the end of a horizontal line. There are 256 valid scan lines 00 - FF. ### 3.2.9 CRT CONTROLLER The 6845/6545/46505 is a software programmable sync and scan generator. It has two ports based at \$9C00 and \$9C01. It is recommended that the reader consult Motorola, Hitachi, Rockwell, or Synertek supplied documentation. Register initialization are as follows: | REGISTER | DESCRIPTION | INITIALIZATION
(DECIMAL) | |----------|--------------------------|-----------------------------| | R0 | Horizontal total-1 | 38 | | R1 | Horizontal displayed | 32 | | R2 | Horizontal sync position | 34 | | R3 | Sync pluse width | 03 | | R4 | Vertical total-1 | 31 | | R5 | Vertical hold adjust | 11 | | R6 | Vertical displayed | 30 | | R7 | Vertical sync position | 31 | | R9 | Scan lines per row-1 | 07 | **TABLE 3-2 REGISTER INITIALIZATION** All other registers are cleared. The interlace capability which differentiates the various types is not used in this application. ### 3.3 DATA/SOUND BOARD The Data Processor runs synchronously to the Video Processor, as was described in this (Section Dual) Port Memory. All basic timing signals originate on the Video Processor Board and are bussed onto the Data Processor Board. The Sound Processor and Amplifier circuitry also resides on this Board. ### 3.3.1 MEMORY MAP The following devices are available for access to the Data Processor. | A.
B.
C.
D. | \$0000
\$0400
\$0800
\$0000
\$0001
\$1000
\$1400 | Dual Port Memory Local Memory ACIA Base Address Video FIRQ Activation Address Data FIRQ Deactivation Address Sound PIA Game PIA 1. | |----------------------|--|--| | G.
H. | \$1900
\$1900
\$1000 | Game PIA 2.
Game PIA 3. | TABLE 3-3 DATA/SOUND MEMORY MAP ### 3.3.2 DUAL PORT MEMORY See discussion of Dual Port Memory under Video Processor Heading (Section 3.2). ### 3.3.3 LOCAL MEMORY This is a 1K block of memory, U15 and U16, provided for scratch and work area for the Data Processor. ### 3.3.4 ACIA A Motorola 6850 ACIA has been provided for diagnostic and other communications. Timing is generated by crystal oscillator Y1 - U23 and prescaled by U27 and U26. SW1 may be configured to allow one of eight baud rates (2 speeds may be software selected in the ACIA). Correct RS-232 levels are provided by U25 and U21. ### 3.3.5 BI-DIRECTIONAL FIRQ CAPABILITY Any access of \$8C00 will generate a FIRQ to the Video Processor. Any access of \$8C01 will remove FIRQ generated by the Video Processor to the Data Processor. This is accomplished by U7, U8, and U9, which resides on the Video Board. ### 3.3.6 SOUND PIA Both ports of PIA U20 have been dedicated to the control of the Sound Processor. Port A is used to select a sound number, which is initiated by strobbing the U20 (CA2) - U8 (CA1) interrupt line. Responses can be made using the reverse U8 (CA2) - U20 (CA1) interrupt. Port B is used to control the amplitude of the generated sound to two Stereo Amplifiers. The output of side B go to U24 and U28, which vary the ratio of the voltage divider across the non-inverting inputs of U29 and U30. This allows spatial positioning of a sound to coincide with real time events occuring on the screen, as well as a time based envelope control. ### 3.3.7 GAME PIA'S Three 6820's are provided
for interfacing with Play Controls and Coin Door Switches. These are located on the Game Board and are accessed through a Jumper Cable J16 and J15 respectively. ### 3.3.8 SOUND PROCESSOR A Motorola 6802 also resides on the Data Board for sound generation. This Processor runs at 3.68MHz and accesses only two devices, PIA'S U7 and U8. U8 as mentioned previously, interface to the Data Processor. It also is the digital to analog output of the Sound Processor. Data from Port B is presented to U13. The current based output is converted to a voltage output by Q1, and controlled in amplitude by a potentiometer placed across J8. Speech circuitry is mixed with sound by R9, and the sum is sent to the Amplifiers. U7 controls the speech synthesis chip U19. The speech signal is shaped and filtered by the multipole bandpass filter U18. ### 3.4 ROM/I/O BOARD This board contains the Program ROM for both the Data and Sound Processors, along with the PIA'S needed to interface control, coils, lamps, etc. ### 3.4.1 GAME PIA'S Three Game PIA'S are located on this board \$1400, \$1900, \$1000. These devices, U11, U20, and U30 respectively, interface through noise control circuits A or B filters for those lines dedicated to inputs. Eleven (11) High Current Drivers have been provided utilizing circuit C. Each of these is capable of switching a 1.5AMP/24Volt DC load to ground. ### 3.4.2 ROM'S Eight ROM locations are provided for the Data Processor, U12 - U19. These are selected by U21. ROM select jumpering for 2732's is as follows: Pin 2-14, 3-13, 4-12, 5-11, and 6-10. The highest address EPROM is U19, or U27 in each bank with addresses of adjacent sockets progressing downward in \$1000 byte blocks. ROM Bank U12-U19 contains 2732 EPROMS as selected by the jumper plug at U22. ROM Bank U25-U27 also contains 2732 EPROMS as selected by the jumper plug at U28. | E-PROM BANK | LOCATION | |-------------|----------| | DATA | U22 | | SOUND | U29 | TABLE 3-5 DECODING JUMPER LOCATION ### 3.5 VIDEO ROM BOARD This Board contains the program ROM for the Video Processor. 16K of memory is paged over address \$A000-\$BFFF. Setting Bit 2 at \$8801 selects page 1 while resetting the bit selects page 0. ### 3.5.1 ROM'S Eight ROM locations U3-U10 contain 2732 EPROMS. ## Illustration & Parts Lists 4 ### INCANDESCENT PANEL | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|------------------------| | 1 | 27-00006-001 | Lamp 47 | | 2 | 26B00009-001 | Bayonet Base Socket | | 3 | 61D00112-001 | Marquee Lighting Plate | ### 8-WAY JOYSTICK | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|----------------------| | 1 | 63-00031-001 | Ball & Shaft (Short) | | 2 | 63-00033-001 | Mask | | 3 | 63-00027-001 | Mounting Plate | | 4 | 62-00002-001 | Shock Mount Pad | | 5 | 63-00028-001 | Switch Plate | | 6 | 63-00030-001 | Actuator | | 7 | 61-00078-001 | "L" Bracket | | 8 | 63-00026-001 | Switch Spacer | | 9 | 29-00016-002 | Leaf Switch | | 10 | 63-00029-001 | Spacer | | 11 | 59B00020-017 | "E" Ring | ### **CONTROL PANEL** | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|----------------------| | 1 | 63B00031-001 | Ball & Shaft | | 2 | 63B00024-001 | Push Button White | | 3 | 42B00108-001 | Cleat, Wood | | 4 | 63D00032-006 | 8-Way Joystick | | 5 | 61A00015-001 | Strike Hook | | 6 | 42D00017-001 | Control Panel, Wood | | 7 | 61D00251-001 | Control Panel, Metal | | 8 | 63-00137-001 | Lexan, Decal | | 9 | 63-00025-001 | Switch Support | | 10 | 54A07001-008 | Nut, Stamped %-11 | | 11 | 29B00016-001 | Leaf Switch | ^{*}Item not shown on drawing ### **DOOR ASSEMBLY** | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|--------------------------| | 1 | 04-00037-002 | Lock Kit | | 2 | 61-00306-001 | P.C.Board Mounting Plate | | 3 | 08-00117-001 | Game P.C. Board Assembly | | * | 79-00067-001 | L.E.D. Values Sheet | | 5 | 08-00001-001 | Video Board | | 6 | 08-00003-001 | ROM/I/O Board | | 7 | 08-00002-003 | Data/Sound Board | | 8 | 08-00039-006 | Coin Processor Board | | 9 | 08-00112-001 | Video ROM Expnsion | | 10 | 61-00142-001 | Lock Rod Assembly | | 11 | 61-00111-001 | Bracket, Lock Rod | | 12 | 61-00306-001 | P.C.B. Mounting Plate | ^{*}Item not shown on drawing ### **COIN DOOR** | ITEM | TAITO
PART NO. | DESCRIPTION | REFERENCE | |------|-------------------|--------------------------------------|-----------| | 1 | 07-00027-001 | Inner Panel With Levers Sub Assembly | 404429 | | 2 | 54-03013-001 | Nut #8-32 | 400-8 | | * | 09-00017-001 | Custom Harness Assembly (SHL Coin) | | | * | 09-00017-002 | Custom Harness Assembly (Dual Coin) | | | 3 | 61B00113-001 | Service Switch Bracket | | | 4 | 29-00022-001 | Service Switch | | | 5 | 54-03011-001 | Nut #4-40 | | | 6 | 63-00014-001 | Switch Cover | 904762 | | 7 | 51-02052-001 | Screw #6-32 x 3/16 SS ph | 100-6-3 | | 8 | 23-00001-001 | C.R.E.M. Coil Assembly | 404354 | | 9 | 51-02052-001 | Screw #6-32 x 3/16 SS ph | 100-4-12 | | 10 | 59-00019-001 | Retainer | 900651 | | 11 | 28-00029-001 | Silver Switch Wire for U.S. 25° | 904710-1 | | 12 | 29-00007-001 | Switch | 904845 | | 13 | 61-00044-001 | Coin Chute | 904701 | | 14 | 61-00045-001 | Coin Return Box | 904598 | | 15 | 61-00025-001 | Switch & C.R.E.M. Coil Bracket | 404428 | | 16 | 59-00018-001 | 25° Acceptor | 5301-10 | | 17 | 51-02051-006 | Screw 4-40 x 3/8 SS ph | 110-4-6 | | 18 | 27-00003-001 | Miniature Bayonet Base Lamp | 904717 | | * | 26-00006-001 | Lamp Socket | | | 19 | 27-00003-001 | #47 Lamp (6.3 Volt) | 904716 | | 20 | 61-00048-001 | Coin Inlet Chute | 904418 | | 21 | 61-00047-001 | Right Half of Coin Inlet Chute | 904594 | | 22 | 54-00001-001 | "U" Type Fastener | 904712 | | 23 | 51-02051-006 | Screw 4-40 x ½ SS ph | 116-4-8 | | 24 | 29-00006-001 | Slam Switch Assembly | 904704 | | 25 | 998325 | Coin Meters | | ^{*}Item not shown on drawing. ### **CABINET ASSEMBLY FRONT VIEW** | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|-----------------------------| | 1 | 07M00055-002 | Incandescent Panel | | 2 | 63B00006-003 | "U" Channel Bracket | | 3 | 47-00012-016 | Marquee | | 4 | 61C00115-001 | Marquee Retaining Bracket | | 5 | 61D00012-001 | Lower Coverglass Bracket | | 6 | 07-00251-001 | Control Panel Assembly | | 7 | 07-00115-001 | Coin Door | | 8 | 61-00113-001 | Switch Bracket | | * | 59-00045-001 | Switch Barrier, Single | | 9 | 07M00057-001 | Service Switch Assembly | | 10 | 29-00022-001 | Slide, Center Return Switch | | 11 | 29B00015-001 | Interlock Switch | | 12 | 61B00114-001 | Interlock Switch Bracket | | * | 59-00046-001 | Switch Barrier, Double | | 13 | 59-00008-001 | Latching Clamp | | 14 | 63B00002-004 | "T" Molding | | 15 | 29A00023-001 | Power ON/OFF Switch | | 16 | 41-00023-001 | Finished Cabinet | ### CABINET ASSEMBLEY FRONT VIEW ### **CABINET ASSEMBLY REAR VIEW** | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|--------------------------| | 1 | 07-00083-001 | Speaker Assembly | | 2 | 61B00009-001 | Speaker Grill | | 3 | 41-00023-001 | Finished Cabinet | | 4 | 63-00053-001 | Monitor Shroud | | 5 | 47-00016-007 | Coverglass | | 6 | 07M00042-001 | A/C Line Cord Assembly | | * | 22-00001-001 | Line Filter | | 7 | 61B00030-002 | Interlock Bracket | | 8 | 29B00015-001 | Interlock Switch | | 9 | 07M00039-001 | Transformer Assembly | | * | 08-00007-001 | Regulator, PCB | | * | 18-00003-001 | Transformer | | * | 61-00208-001 | CRT Support Frame | | 10 | 61C00054-001 | Cash Box Lid | | 11 | 31-00004-001 | 19" Color Monitor | | 12 | 63-00019-001 | Cash Tray Separator | | 13 | 61B00039-001 | Cash Tray Handle | | 14 | 61D00060-001 | Cash Box | | 15 | 63R00010-001 | Cash Tray (only) | | 16 | 07M00054-001 | Cash Tray Assembly | | 17 | 08-00002-003 | Data/Sound P.C.B. | | 18 | 08-00003-001 | ROM/IO P.C.B. | | 19 | 04-00037-002 | Lock Kit | | 20 | 08-00001-001 | Video Processor P.C. B. | | 21 | 41-00014-004 | Back Door | | 22 | 45C00002-001 | Lock Assembly | | 23 | 61B00142-001 | Lock Rod Assembly | | 24 | 61A00111-001 | Lock Rod Bracket | | 25 | 63-00143-001 | Shield | | 26 | 61-00208-001 | CRT Support Frame | | 27 | 61-00006-001 | Upper Coverglass Bracket | | 28 | 26-00008-001 | Socket Lamp | | 29 | 27-00006-001 | #47 Bulb | | 30 | 61-00306-001 | Ground Plate | ### **CABINET ASSEMBLY REAR VIEW** ### POWER SUPPLY COMPONENT LAYOUT ### POWER SUPPLY FIGURE 8 | SYM | TAITO
PART NO. | DESCRIPTION | |-----|-------------------|-------------------------------| | R1 | 11-00001-102 | Resistor 1.0K 5% ¼W 5% | | R2 | 11-00001-512 | Resistor 5.1K ¼W 5% | | R3 | 11-00001-183 | Resistor 18K ¼W 5% | | R4 | 11-00001-224 | Resistor 220K ¼W 5% | | R5 | 11-00001-020 | Resistor 20hm ¼W + 5% | | R6 | 11-00001-222 | Resistor 2.2K ¼W 5% | | R7 | 11-10001-101 | Resistor 100K 1/4W 5% | | R8 | 11-00001-102 | Resistor 10K 1/4W 5% | | R9 | 11-00001-472 | Resistor 4.7K ¼W 5% | | R10 | 11-10001-101 | Resistor 100K ½W 5% | | R11 | 11-30001-015 | Resistor .15 4W 5% | | R12 | 11-30001-015 | Resistor .15 4W 5% | | R13 | 11-00001-472 | Resistor 4.7K ¼W 5% | | R14 | 11-00001-222 | Resistor 2.2K ¼W 5% | | R15 | 11-00001-222 | Resistor 2.2K ¼W 5% | | R16 | 11-60001-252 | Pot 2.5K ¼W 20% | | R17 | 11-00001-222 | Resistor 2.2K ¼W 5% | | R18 | 11-60001-102 | Pot 1.0K ¼W 20% | | R19 | 11-00001-102 | Resistor 510K 1/4W 5% | | R20 | 11-10001-470 | Resistor 47K ½W 5% | | R21 | 11-00001-470 | Resistor 1.6K 1/4W 5% | | R22 | 11-00001-102 | Resistor 10K 1/4W 5% | | R23 | 11-00001-472 | Resistor 4.7K 1/4W 3/4 | | R24 | 11-00001-472 | Resistor 2.2K 1/4W 5% | | R25 | 11-60001-102 | Pot 1.0K ¼W 5% | | R26 | 11-00001-472 | Resistor 470K 1/4W 5% | | R27 | 11-00001-222 | Resistor 2.2K 1/4W 5% | | R28 | 11-60001-252 | Pot 2.5K ¼W 20% | | R29 | 11-00001-472 | Resistor 4.7K 1/4W 5% | | R30 | 11-00001-122 | Resistor 1.2K ¼W 5% | | R31 | 11-10001-470 | Resistor 47K ¼W 5% | | R32 | 11-30001-015 | Resistor .15K 4W 5% | | R33 | 11-00001-222 | Resistor 2.2K ¼W 5% | | R34 | 11-00001-122 | Resistor 1.2K
¼W 5% | | R35 | 11-00001-511 | Resistor 510 ¼W 5% | | R36 | 11-00001-222 | Resistor 2.2K ¼W 5% | | R37 | 11-00001-104 | Resistor 100K | | R38 | 11-00001-103 | Resistor 10K ¼W 5% | | R39 | 11-00001-224 | Resistor 220L ¼W 5% | | C1 | 12-30001-225 | Capacitor, Tantalum 2.2uf 25V | | | 12-10004-103 | Capacitor, Ceramic .01uf | | | 12-10004-103 | Capacitor, Ceramic .01uf | | | 12-30001-105 | Capacitor, Tantalum 1.uf 35V | | | 20001 100 | capacitor, funtation file 000 | | C5 12-10001-102 Capacitor, 001uf C6 12-30001-106 Capacitor, Tantalum 10uf C7 12-20003-509 Capacitor, Electrolytic 50,000uf C8 12-30001-105 Capacitor, Electrolytic 20,000uf C9 12-20003-209 Capacitor, Electrolytic 20,000uf C10 12-10001-332 Capacitor, Ceramic 0033uf C11 12-30001-476 Capacitor, Tantalum 47uf C12 12-30001-105 Capacitor, Ceramic .01uf C14 12-10004-103 Capacitor, Ceramic .01uf C15 12-30001-476 Capacitor, O01uf C16 12-20002-108 Capacitor, Tantalum 47uf C16 12-20001-105 Capacitor, Tantalum 2.2uf 25V C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-105 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 2.uf 35V | SYM | TAITO
PART NO. | DESCRIPTION | |--|------|-------------------|----------------------------------| | C7 12-20003-509 Capacitor, Electrolytic 50,000uf C8 12-30001-105 Capacitor, Tantalum 1.uf 35V C9 12-20003-209 Capacitor, Electrolytic 20,000uf C10 12-10001-332 Capacitor, Ceramic .003suf C11 12-30001-476 Capacitor, Tantalum 47uf C12 12-30001-105 Capacitor, Ceramic .01uf C14 12-10001-102 Capacitor, O01uf C15 12-30001-476 Capacitor, Jonuf C16 12-20002-108 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Tantalum 2.2uf 25V C18 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-225 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-001 Fuse, AA F4 24-00003-004 Fuse, 4A BR1 13-00100-012 Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 2A, 100V BR3 13-0000-01 Diode IN4002 </td <td>C5</td> <td>12-10001-102</td> <td>Capacitor, .001uf</td> | C5 | 12-10001-102 | Capacitor, .001uf | | C8 12-30001-105 Capacitor, Tantalum 1.uf 35V C9 12-20003-209 Capacitor, Electrolytic 20,000uf C10 12-10001-332 Capacitor, Ceramic .0033uf C11 12-30001-476 Capacitor, Tantalum 47uf C12 12-30001-105 Capacitor, Ceramic .01uf C13 12-10004-103 Capacitor, Ceramic .01uf C14 12-10001-102 Capacitor, .001uf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Electrolytic 1,000uf C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-25 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-0003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR2 13-00100-002 Diode Bridge 25A, 100V BR3 13-00100-001 Diode IN4002 | C6 | 12-30001-106 | Capacitor, Tantalum 10uf | | C9 12-20003-209 Capacitor, Electrolytic 20,000uf C10 12-10001-332 Capacitor, Ceramic .0033uf C11 12-30001-476 Capacitor, Tantalum 47uf C12 12-30001-105 Capacitor, Ceramic .01uf C13 12-10004-103 Capacitor, O01uf C14 12-10001-102 Capacitor, Jonuf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Electrolytic 1,000uf C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-252 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-0003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-001 Fuse, 4A F5 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-002 Diode Bridge 25A, 100V BR2 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 <t< td=""><td>C7</td><td>12-20003-509</td><td>Capacitor, Electrolytic 50,000uf</td></t<> | C7 | 12-20003-509 | Capacitor, Electrolytic 50,000uf | | C10 12-10001-332 Capacitor, Ceramic .0033uf C11 12-30001-476 Capacitor, Tantalum 47uf C12 12-30001-105 Capacitor, Tantalum 1.uf 35V C13 12-10004-103 Capacitor, Ceramic .01uf C14 12-10001-102 Capacitor, O01uf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Tantalum 2.2uf 25V C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-105 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-0003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-001 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-020 Diode Bridge 2A, 100V BR3 13-00100-001 Diode IN4002 D2 13-14002-001 Diode IN4002 | C8 | 12-30001-105 | Capacitor, Tantalum 1.uf 35V | | C11 12-30001-476 Capacitor, Tantalum 47uf C12 12-30001-105 Capacitor, Tantalum 1.uf 35V C13 12-10004-103 Capacitor, Ceramic .01uf C14 12-10001-102 Capacitor, O01uf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Tantalum 2.2uf 25V C18 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-105 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-001 Fuse, 2A F4 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-020 Diode Bridge 2A, 100V BR3 13-00100-001 Diode IN4002 D1 13-14002-001 Diode IN4002 D3 | C9 | 12-20003-209 | Capacitor, Electrolytic 20,000uf | | C12 12-30001-105 Capacitor, Tantalum 1.uf 35V C13 12-10004-103 Capacitor, Ceramic .01uf C14 12-10001-102 Capacitor, .001uf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Tantalum 2.2uf 25V C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-0003-010 10A Fuse F2 24-0003-010 10A Fuse F3 24-00003-001 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-025 Diode Bridge 2A, 100V BR3 13-00100-020 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode IN4002 D4 13-14002-001 <td>C10</td> <td>12-10001-332</td> <td>Capacitor, Ceramic .0033uf</td> | C10 | 12-10001-332 | Capacitor, Ceramic .0033uf | | C13 12-10004-103 Capacitor, Ceramic .01uf C14 12-10001-102 Capacitor, .001uf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Electrolytic 1,000uf C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-225 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-0003-010 10A Fuse F2 24-0003-010 10A Fuse F3 24-0003-004 Fuse, 2A F4 24-0003-004 Fuse, 4A F5 24-0003-004 Fuse, 4A F5 24-0003-004 Fuse, 4A BR1 13-0100-025 Diode Bridge 25A, 100V BR2 13-0100-012 Diode Bridge 2A, 100V BR3 13-00100-025 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode IN4002 D4 13-14002-001 | C11 | 12-30001-476 | Capacitor, Tantalum 47uf | | C14 12-10001-102 Capacitor, .001uf C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Electrolytic 1,000uf C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-125 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 2A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 | C12 | 12-30001-105 | Capacitor, Tantalum 1.uf 35V | | C15 12-30001-476 Capacitor, Tantalum 47uf C16 12-20002-108 Capacitor, Electrolytic 1,000uf C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-125 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-001 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-0010-025 Diode Bridge 25A, 100V BR2 13-0100-012 Diode Bridge 2A, 100V BR3 13-0010-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-14002-001 <t< td=""><td>C13</td><td>12-10004-103</td><td>Capacitor, Ceramic .01uf</td></t<> | C13 | 12-10004-103 | Capacitor, Ceramic .01uf | | C16 12-20002-108 Capacitor, Electrolytic 1,000uf C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-225 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025
Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 2A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V BR3 13-00100-002 Diode IN4002 D3 13-14002-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-16064-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D10 13-14002-001 Diode | C14 | 12-10001-102 | Capacitor, .001uf | | C17 12-30001-225 Capacitor, Tantalum 2.2uf 25V C18 12-30001-225 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-001 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 2A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-14002-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-1602-001 Diode IN4002 D1 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 | C15 | 12-30001-476 | Capacitor, Tantalum 47uf | | C18 12-30001-225 Capacitor, Tantalum 2.2uf 25V C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-001 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 2A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-14002-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-1602-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 | C16 | 12-20002-108 | Capacitor, Electrolytic 1,000uf | | C19 12-30001-105 Capacitor, Tantalum 1.uf 35V F1 24-00003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-002 Diode Bridge 2A, 100V BR3 13-00100-002 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-14002-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 | C17 | 12-30001-225 | Capacitor, Tantalum 2.2uf 25V | | F1 24-00003-010 10A Fuse F2 24-00003-010 10A Fuse F3 24-00003-004 Fuse, 2A F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-002 Diode Bridge 2A, 100V BR3 13-00100-002 Diode IN4002 D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-14002-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Transorb (IN6276) D14 13-16281-001 | C18 | 12-30001-225 | Capacitor, Tantalum 2.2uf 25V | | F2 | C19 | 12-30001-105 | Capacitor, Tantalum 1.uf 35V | | F3 | F1 | 24-00003-010 | 10A Fuse | | F4 24-00003-004 Fuse, 4A F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-002 Diode Bridge 12A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 | F2 | 24-00003-010 | 10A Fuse | | F5 24-00003-004 Fuse, 4A BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 12A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode, Zener IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 | F3 | 24-00003-003 | Fuse, 2A | | BR1 13-00100-025 Diode Bridge 25A, 100V BR2 13-00100-012 Diode Bridge 12A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode, Zener IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN6267) LED1 13-00001-001 LED (Red) <td>F4</td> <td>24-00003-004</td> <td>Fuse, 4A</td> | F4 | 24-00003-004 | Fuse, 4A | | BR2 13-00100-012 Diode Bridge 12A, 100V BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) | F5 | 24-00003-004 | Fuse, 4A | | BR3 13-00100-002 Diode Bridge 2A, 100V D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode, Zener IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | BR1 | 13-00100-025 | Diode Bridge 25A, 100V | | D1 13-14002-001 Diode IN4002 D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode, Zener IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | BR2 | 13-00100-012 | Diode Bridge 12A, 100V | | D2 13-14002-001 Diode IN4002 D3 13-10752-001 Diode, Zener IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | BR3 | 13-00100-002 | Diode Bridge 2A, 100V | | D3 13-10752-001 Diode, Zener IN4002 D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D1 | 13-14002-001 | Diode IN4002 | | D4 13-14002-001 Diode IN4002 D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D2 | 13-14002-001 | Diode IN4002 | | D5 13-14002-001 Diode IN4002 D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D3 | 13-10752-001 | Diode, Zener IN4002 | | D6 13-14002-001 Diode IN4002 D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D4 | 13-14002-001 | Diode IN4002 | | D7 13-10964-001 Diode, Zener IN4002 D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11
13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D5 | 13-14002-001 | Diode IN4002 | | D8 13-14002-001 Diode IN4002 D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D6 | 13-14002-001 | Diode IN4002 | | D9 13-14002-001 Diode IN4002 D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D7 | 13-10964-001 | Diode, Zener IN4002 | | D10 13-14002-001 Diode IN4002 D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D8 | 13-14002-001 | Diode IN4002 | | D11 13-14002-001 Diode IN4002 D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D9 | 13-14002-001 | Diode IN4002 | | D12 13-14002-001 Diode IN4002 D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D10 | 13-14002-001 | Diode IN4002 | | D13 13-16276-001 Transorb (IN6276) D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D11 | 13-14002-001 | Diode IN4002 | | D14 13-16281-001 Transorb (IN6281) D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D12 | 13-14002-001 | Diode IN4002 | | D15 13-14002-001 Diode IN4002 D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D13 | 13-16276-001 | Transorb (IN6276) | | D16 13-14002-001 Diode IN4002 D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D14 | 13-16281-001 | Transorb (IN6281) | | D17 13-16267-001 Transorb (IN6267) LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D15 | 13-14002-001 | Diode IN4002 | | LED1 13-00001-001 LED (Red) LED2 13-00001-001 LED (Red) | D16 | 13-14002-001 | Diode IN4002 | | LED2 13-00001-001 LED (Red) | D17 | 13-16267-001 | Transorb (IN6267) | | | LED1 | 13-00001-001 | LED (Red) | | | LED2 | 13-00001-001 | LED (Red) | | LED3 13-00001-001 LED (Red) | LED3 | 13-00001-001 | LED (Red) | | LED4 13-00001-001 LED (Red) | LED4 | 13-00001-001 | LED (Red) | # POWER SUPPLY FIGURE 8 | SYM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|-----------------------------| | U1 | 15-62500-001 | Opto Coupler H11AA2 | | U2 | 15-50556-001 | Timer (Dual) 556 | | U3 | 15-50723-001 | Voltage Regulator 723 | | U4 | 15-50723-001 | Voltage Regualtor 723 | | REG1 | 15-57912-001 | Voltage Regualtor 7912 | | REG2 | 15-57905-001 | Voltage Regualtor 79L05 | | Q1 | 14-22905-001 | Transistor 2N2905 | | 02 | 14-22905-001 | Transistor 2N2905 | | Q3 | 14-22905-001 | Transistor 2N2905 | | Q4 | 14-22905-001 | Transistor 2N2905 | | Q5 | 14-23055-001 | Transistor 2N3055 | | Q6 | 14-22905-001 | Transistor 2N2905 | | Q7 | 14-20030-001 | Transistor TIP-30A | | Q8 | 14-26401-001 | SCR 2N6401 | | Q9 | 14-26401-001 | SCR 2N6401 | | J1 | 25-00022-006 | Connector, 1-380999-0 6Pin | | J2 | 25-00022-008 | Connector, 350212-1 8Pin | | J3 | 25-00002-014 | Connector, 09-60-1141 14Pin | | J4 | 25-00002-014 | Connector, 09-60-1140 14Pin | | | 24-10001-001 | Fuse Clips | | | 30-00220-002 | Heat Sink Dual To-220 | | | 30-00003-001 | Heat Sink Single To-3 | #### **VIDEO PROCESSOR COMPONENT LAYOUT** | SYM | TAITO
PART NO. | DESCRIPTION | |-----|-------------------|---| | C1 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80, -20% | | C2 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C3 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C4 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C5 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C6 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C7 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C8 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C9 | 12-10002-104 | | | C10 | , | Capacitor Caramia, 194, 50V, 1997, 2007 | | | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C11 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C12 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C13 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C14 | 12-10003-101 | Capacitor Ceramic, 100pf, 10% NPO Axial Lead | | C15 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C16 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C17 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C18 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C19 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C20 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C21 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C22 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C23 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C26 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C27 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C28 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C29 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C30 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C31 | 12-10003-101 | Capacitor Disk 100pf, 10% NPO | | C32 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C33 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C34 | 12-10002-104 | Capacitor Ceramic, $.1$ uf, 50 V, $+80/-20\%$ | | C35 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C36 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C37 | 12-10002-104 | Capacitor Ceramic, $.1uf,50V, +80/-20\%$ | | C38 | 12-10002-104 | Capacitor Ceramic, $.1uf,50V, +80/-20\%$ | | C39 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C40 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C41 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C42 | 12-10002-104 | Capacitor Tant, 10uf,16V | | C43 | 12-10002-104 | Capacitor Ceramic, $.1uf.50V$, $+80/-20\%$ | | C44 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C45 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C50 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C51 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C52 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C53 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C54 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | CVM | TAITO | DESCRIPTION | |------------|--------------------------|--| | SYM
C55 | PART NO.
12-10002-104 | Capacitar Caramia, 1ut 50V + 90 + 209/ | | | | Capacitor Ceramic, .1uf,50V, +80/-20% | | C56 | 12-10002-104 | Capacitor Ceramic, 1uf,50V, +80/-20% | | C57 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C58 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C59 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-36 | | C60 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C61 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C62 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C63 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C64 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C65 | 12-10001-471 | Capacitor Ceramic, 470uf,50V,10% X7R
Axial Lead | | C66 | 12-10002-104 | Capacitor Ceramic, $.1uf,50V, +80/-20\%$ | | C67 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C68 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C69 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C70 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C71 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C72 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C73 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C74 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C75 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C76 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C77 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C78 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C79 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C80 | 12-30001-106 | Capacitor Tant, 10uf,16V | | C81 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C82 | 12-10002-104 | Capacitor Ceramic, $.1uf,50V, +80/-20\%$ | | C83 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-36$ | | C84 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C85 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C86 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C87 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C88 | 12-20001-107 | Capacitor Electrolytic, 100uf,25V,
$+100/-20\%$ | | C89 | 12-20001-107 | Capacitor Electrolytic, 100uf,25V, $+100/-20\%$ | | C90 | 12-20001-107 | Capacitor Electrolytic, 100uf,25V,
+100/-20% | | C91 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C92 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C93 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, $+80/-20\%$ | | C94 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C95 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C96 | 12-10001-471 | Capacitor Ceramic, 470pf,50V,10% X7R
Axial Lead | | C97 | 12-10001-471 | Capacitor Ceramic, 470pf,50V,10% X7R
Axial Lead | | C98 | 12-10001-471 | Capacitor Ceramic, 470pf,50V,10% X7R
Axial Lead | | SYM | TAITO
PART NO. | DESCRIPTION | |------------|-------------------|---| | C99 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C100 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C101 | 12-10003-100 | Capacitor Ceramic, 10pf, 10% NPO Axial
Lead 20% | | C102 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C103 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C104 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C105 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C106 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/20% | | C107 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C108 | 12-10002-104 | Capacitor Ceramic, .1uf,50V, +80/-20% | | C113 | 12-10001-471 | Capacitor Ceramic, 50V, 10% 470PF
Axial Lead | | R1 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R2 | 11-00001-152 | Resistor 1.5K, ¼W, 5% | | R3 | 11-00001-271 | Resistor 270 OHM, 1/4W, 5% | | R4 | 11-00001-271 | Resistor 270 OHM, 1/4W, 5% | | R5 | 11-00001-271 | Resistor 270 OHM, 1/4W, 5% | | R6 | 11-00001-332 | Resistor 3.3K, ¼W, 5% | | R7 | 11-00001-221 | Resistor 220 OHM, ¼W, 5% | | R8 | 11-00001-222 | Resistor 2.2K, ¼W, 5% | | R9 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R10 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R11 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R12 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R13 | 11-00001-820 | Resistor 82 OHM, ¼W, 5% | | R14 | 11-00001-181 | Resistor 180 OHM, ¼W, 5% | | R15 | 11-00001-271 | Resistor 270 OHM, ¼W, 5% | | R16 | 11-00001-471 | Resistor 470 OHM, 1/4W, 5% | | R17 | 11-00001-471 | Resistor 470 OHM, ¼W, 5% | | R18 | 11-00001-271 | Resistor 270 OHM, 1/4W, 5% | | R19 | 11-00001-181 | Resistor 180 OHM, ¼W, 5% | | R20 | 11-00001-820 | Resistor 82 OHM, 1/4W, 5% | | R21 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R22 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R23 | 11-00001-330 | Resistor 33 OHM, 1/4W, 5% | | R24 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R25 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R26 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R27 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R28 | 11-00001-181 | Resistor 180 OHM, ¼W, 5% | | R29 | 11-00001-471 | Resistor 470 OHM, 1/4W, 5% | | R30 | 11-00001-471 | Resistor 470 OHM, 1/4W, 5% | | R31 | 11-00001-471 | Resistor 470 OHM, 1/4W, 5% | | R32 | 11-00001-471 | Resistor 470 OHM, 1/4W, 5% | | R33 | 11-00001-471 | Resistor 470 OHM, ¼W, 5% | | | 44 00004 004 | | | R34 | 11-00001-681 | Resistor 680 UHM, 1/4W, 5% | | R34
R35 | 11-00001-681 | Resistor 680 OHM, 1/4W, 5% Resistor 390 OHM, 1/4W, 5% | | SYM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|---------------------------------| | R37 | 11-00001-473 | Resistor 47K OHM, 1/4W, 5% | | R38 | 11-00001-332 | Resistor 3300 OHM, 1/4W, 5% | | R39 | 11-00001-331 | Resistor 330 OHM, ¼W, 5% | | R40 | 11-00001-331 | Resistor 330 OHM, ¼W, 5% | | R41 | 11-00001-331 | Resistor 330 OHM, ¼W, 5% | | R42 | 11-00001-331 | Resistor 330 OHM, ¼W, 5% | | R43 | 11-00001-331 | Resistor 330 OHM, ¼W, 5% | | R44 | 11-00001-331 | Resistor 330 OHM, 1/4W, 5% | | R45 | 11-00001-471 | Resistor 470 OHM, 1/4W, 5% | | R46 | 11-00001-820 | Resistor 82 OHM, 1/4W, 5% | | R47 | 11-00001-471 | Resistor 470 OHM, ¼W, 5% | | R48 | 11-00001-181 | Resistor 180 OHM, 1/4W, 5% | | R49 | 11-00001-271 | Resistor 270 OHM, 1/4W, 5% | | R50 | 11-00001-473 | Resistor 47K OHM, ¼W, 5% | | R51 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R52 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R53 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R54 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R55 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R56 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R57 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R58 | 11-00001-330 | Resistor 33 OHM, ¼W, 5% | | R59 | 11-00001-473 | Resistor 47K OHM, ¼W, 5% | | R60 | 11-00001-332 | Resistor 3300 OHM, 1/4W, 5% | | R61 | 11-00001-391 | Resistor 390 OHM, ¼W, 5% | | R62 | 11-00001-332 | Resistor 3.3K, ¼W, 5% | | R63 | 11-00001-102 | Resistor 1K, ¼W, 5% | | R64 | 11-00001-121 | Resistor 120 OHM, ¼W, 5% | | R65 | 11-00001-151 | Resistor 150 OHM, ¼W, 5% | | R66 | 11-00001-332 | Resistor 3.3K, ¼W, 5% | | R67 | 11-00001-332 | Resistor 3300 OHM, ¼W, 5% | | R68 | 11-00001-332 | Resistor 3.3K, ¼W, 5% | | R69 | 11-00001-332 | Resistor 3.3K, ¼W, 5% | | FB1 | 17-00001-001 | Ferrite Bead | | FB2 | 17-00001-001 | Ferrite Bead | | FB3 | 17-00001-001 | Ferrite Bead | | FB4 | 17-00001-001 | Ferrite Bead | | FB5 | 17-00001-001 | Ferrite Bead | | FB6 | 17-00001-001 | Ferrite Bead | | FB7 | 17-00001-001 | Ferrite Bead | | FB8 | 17-00001-001 | Ferrite Bead | | FB9 | 17-00001-001 | Ferrite Bead | | FB10 | 17-00001-001 | Ferrite Bead | | FB14 | 17-00001-001 | Ferrite Bead | | Q1 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | Q2 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | Q3 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | Q4 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | SYM | TAITO
Part No. | DESCRIPTION | |--------------|-------------------|--| | Q5 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | Q6 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | Q7 | 14-23904-001 | Transistor NPN Silicon (2N3904) | | Q8 | 14-23905-001 | Transistor NPN Silicon (2N3905) | | LED1 | 13-00001-001 | L.E.D. RED, TL-1¾ | | LED2 | 13-00001-001 | L.E.D. RED, TL-1¾ | | LED3 | 13-00001-001 | L.E.D. RED, TL-1¾ | | LED4 | 13-00001-001 | L.E.D. RED, TL-1¾ | | LED5 | 13-00001-001 | L.E.D. RED, TL-1¾ | | LED6 | 13-00001-001 | L.E.D. RED, TL-1¾ | | Y1 | 19-00003-001 | CRYSTAL, 20,000MHZ | | BATT | 20-00001-001 | Battery, NICAD, 3.6V, 1/3 AA | | SW1 | 29-00017-001 | Switch Momentary | | TP1 | 59-00021-001 | Test Point | | TP2 | 59-00021-001 | Test Point | | TP3 | 59-00021-001 | Test Point | | TP4 | 59-00021-001 | Test Point | | TP5 | 59-00021-001 | Test Point | | TP6 | 59-00021-001 | Test Point | | TP7 | 59-00021-001 | Test Point | | TP8 | 59-00021-001 | Test Point | | RP1 | 11-50001-102 | 1K OHM Resistor Sip Pack | | RP2 | 11-50001-473 | 47K OHM Resistor Sip Pack | | RP3 | 11-50001-332 | 3.3K Resistor Sip Pack | | RP4 | 11-50001-332 | 3.3K Resistor Sip Pack | | RP5 | 11-50001-332 | 3.3K Resistor Sip Pack | | J1 | 25-00001-014 | Connector, 14 Pin .156 Center | | J2 | 25-00002-014 | Connector, 14 Pin .156 Center | | J3 | 25-00001-001 | Connector, 50 Pin Header Vertical | | J6 | 25-00001-001 | Connector, 50 Pin Header Vertical | | J19 | 25-00002-002 | Connector, 2 Pin .156 Center | | W1 | 25-00021-002 | Connector .1 Center for W1 | | W1 | 26-00007-001 | Shorting Pin | | | 32-00001-001 | P.C.B. Video Processor Board | | U1 | 15-20245-001 | Bus Transiciever, Octal (74LS245) | | U2 | 15-20245-001 | Bus Transiciever, Octal (74LS245) | | U3 | 15-10003-001 | Ram 1K x 4 NMOS Static (2114) | | | 26-00001-018 | Socket DIP 18 Pin for U3 | | U4 | 15-10003-001 | Ram 1K x 4 NMOS Static (2114) | | | 26-00001-018 | Socket DIP 18 Pin for U4 | | U5 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) | | U6 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) Multiplexer Quad 2-Input (74LS157) | | U7 | 15-20137-001 | Flip Flop, Dual D (74LS74) | | U8 | 15-20074-001 | Quad 2 Input or (74LS32) | | U9 | 15-20032-001 | Quad 2 Input or (74LS32) | | | 15-20032-001 | RAM 16K x 1 Dynamic (4116) | | U10 | | | | ļ | 26-00001-016 | Socket DIP 16 Pin for U10 | | | TAITO | | |----------|--------------|-------------------------------------| | SYM | PART NO. | DESCRIPTION | | U11 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U11 | | U12 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U12 | | U13 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U13 | | U14 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U14 | | U15 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U15 | | U16 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U16 | | U17 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U17 | | U18 | 15-00003-001 | CRT CONTROLLER 68A45 | | | 26-00001-040 | Socket DIP 40 Pin for U18 | | U19 | 15-20086-001 | Quad 2 Input Exclusive or (74LS86) | | U20 | 15-20086-001 | Quad 2 Input Exclusive or (74LS86) | | U21 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) | | U22 | 15-20032-001 | Quad 2 Input or (74LS157) | | U23 | 15-20161-001 | Counter, 4 Bit Presetable (74LS161) | | U24 | 15-20004-001 | Inverter, HEX (74LS04) | | U25 | 15-70374-001 | Latch, Octal Shockey (74LS374) | | U26 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U26 | | U27 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U27 | | U28 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | <u> </u> | 26-00001-016 | Socket DIP 16 Pin for U28 | | U29 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U29 | | U30 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016
| Socket DIP 16 Pin for U30 | | U31 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U31 | | U32 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U32 | | U33 | 15-10001-001 | RAM 16K x1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U33 | | U34 | 15-20374-001 | Latch, Octal (74LS374) | | U35 | 15-20153-001 | Multiplexer, Dual 4-Input (74LS153) | | U36 | 15-20074-001 | Flip Flop Dual-D (74LS74) | | U37 | 15-20008-001 | Quad, 2-Input and (74LS08) | | U38 | 15-70113-001 | Flip Flop JK Schottky (74LS113) | | U39 | 15-20004-001 | Inverter, HEX (74LS04) | | U40 | 15-30017-001 | Buffer/Driver, HEX (7417) | | U41 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U41 | | CVM | TAITO | DESCRIPTION | |-----|--------------|--| | SYM | PART NO. | DESCRIPTION DAM 16K of Description (4116) | | U42 | | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U42 | | U43 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U43 | | U44 | | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U44 | | U45 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U45 | | U46 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U46 | | U47 | | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U47 | | U48 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | | 26-00001-016 | Socket DIP 16 Pin for U48 | | U49 | 15-20032-001 | Quad 2-Input or (74LS32) | | U50 | 15-20086-001 | Quad 2-Input Exclusive or (74LS86) | | U51 | 15-20086-001 | Quad 2-Input Exclusive or (74LS86) | | U52 | 15-20153-001 | Multiplexer, Dual 4-Input (74LS153) | | U53 | 15-20153-001 | Multiplexer, Dual 4-Input (74LS153) | | U54 | 15-20153-001 | Multiplexer, Duai 4-Input (74LS153) | | U55 | 15-20157-001 | Multiplexer, Quad 2-Input (74LS157) | | U56 | 15-10008-001 | RAM 1K x 4 HMOS Static (2148) | | | 26-00001-018 | Socket DIP 18 Pin for U56 | | U57 | 15-10008-001 | RAM 1K x 4 HMOS Static (2148) | | ļ | 26-00001-018 | Socket DIP 18 Pin for U57 | | U58 | 15-30017-001 | Buffer/Driver, HEX (7417) | | U59 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U60 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U61 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U62 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U63 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U64 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U65 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U66 | 15-10001-001 | RAM 16K x 1 Dynamic (4116) | | U67 | 15-20032-001 | Quad 2-Input or (74LS32) | | U68 | 15-20244-001 | Octal Buffer (74LS244) | | U69 | 15-20245-001 | BUS Transciever, Octal (74LS245) | | U70 | 15-20374-001 | Latch, Octal (74LS374) | | U71 | 15-20374-001 | Latch, Octal (74LS374) | | U72 | 15-20374-001 | Latch, Octal (74LS374) | | U73 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) | | U74 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) | | U75 | 15-20245-001 | BUS Transciever, Octal (74LS245) | | U76 | 15-20273-001 | Register 8 Bit (74LS273) | | U77 | 15-20373-001 | Latch, Octal (74LS373) | | U78 | 15-20373-001 | Latch, Octal (74LS373) | | U79 | 15-20373-001 | Latch. Octal (74LS373) | | U80 | 15-20373-001 | Latch. Octal (74LS373) | | SYM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|------------------------------------| | U81 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) | | U82 | 15-00002-001 | Microprocessor 68A09E | | | 26-00001-040 | Socket DIP 40 Pin for U82 | | U83 | 15-20244-001 | Octal, Buffer (74LS244) | | U84 | 15-20244-001 | Octal, Buffer (74LS244) | | U85 | 15-10002-001 | RAM 1K x 4 CMOS Static (6514) | | | 26-00001-018 | Socket DIP 18 Pin for U85 | | U86 | 15-10002-001 | RAM 1K x 4 CMOS Static (6514) | | | 26-00001-018 | Socket DIP 18 Pin for U86 | | U87 | 15-20139-001 | Decoder Dual 1 of 4 (74LS139) | | U88 | 15-20032-001 | Quad 2-Input of (74LS32) | | U89 | 15-20074-001 | Flip Flop, Dual-D (74LS74) | | U90 | 15-20004-001 | Inverter HEX (74LS04) | | U91 | 15-20374-001 | Latch, Octal (74LS374) | | U92 | 15-20374-001 | Latch, Octal (74LS374) | | U93 | 15-20374-001 | Latch, Octal (74LS374) | | U94 | 15-20374-001 | Latch, Octal (74LS374) | | U95 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U96 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U97 | 15-20244-001 | Buffer, Octal (74LS244) | | U98 | 15-20244-001 | Buffer, Octal (74LS244) | | U99 | 15-20138-001 | Decoder, 1 of 8 (74LS138) | | U100 | 15-40000-001 | Quad 2-Input NOR (74C00) | | U101 | 15-20008-001 | Quad 2-Input AND (74LS08) | | U102 | 15-20010-001 | Triple 3-Input AND (74LS10) | | U103 | 15-20000-001 | Quad 2-Input NAND (74LS00) | | U104 | 15-20157-001 | Multiplexer Quad 2-Input (74LS157) | | U105 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U106 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U107 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U108 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U109 | 15-20299-001 | Shift Register 8 Bit (74LS299) | | U110 | 15-20299-001 | Shift Register 8 Bit (74LS299) | #### DATA/SOUND PROCESSOR COMPONENT LAYOUT ## DATA/SOUND PROCESSOR | SYM | TAITO
PART NO. | DESCRIPTION | |-----|---|----------------------------| | R1 | 11-00001-473 | Resistor 47K 1/4W ±5% | | R2 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R3 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R4 | 11-00001-332 | Resistor 3300 OHM 1/4W ±5% | | R5 | 11-00001-472 | Resistor 4.7K ¼W ±5% | | R6 | 11-00001-103 | Resistor 4.7K ¼W ±5% | | R7 | 11-00001-103 | Resistor 10K ¼W ±5% | | R8 | 11-00001-332 | Resistor 3.3K OHM ¼W ±5% | | R9 | 11-60001-502 | Pot, P.C. Mount 5K | | R10 | 11-00001-473 | Resistor 47K ¼W ±5% | | R11 | 11-00001-473 | Resistor 47K ¼W ±5% | | R12 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R13 | 11-00001-332 | Resistor 3.3K ¼W +5% | | R14 | 11-00001-332 | Resistor 3.3K ¼W +5% | | R15 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R16 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R17 | 11-00001-332 | Resistor 3300 OHM ¼W ±5% | | R18 | 11-00001-124 | Resistor 120K ¼W ±5% | | R19 | 11-00001-472 | Resistor 4.7K ¼W ±5% | | R20 | 11-00001-221 | Resistor 220 OHM ¼W ±5% | | R21 | 11-00001-221 | Resistor 220 OHM ¼W ±5% | | R22 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R24 | 11-00001-182 | Resistor 1.8K ¼W ±5% | | R25 | 11-60001-104 | POT, P.C. Mount 100K | | R26 | 11-00001-103 | Resistor 10K 1/4W ±5% | | R27 | 11-00001-103 | Resistor 10K ¼W ±5% | | R28 | 11-00001-223 | Resistor 22K ¼W ±5% | | R29 | 11-00001-562 | Resistor 5.6K 1/4W ±5% | | R30 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R31 | 11-00001-020 | Resistor 2.2 OHM ¼W ±5% | | R32 | 11-00001-010 | Resistor 1 OHM ½W ±5% | | R33 | 11-00001-020 | Resistor 2.2 OHM ¼W ±5% | | R34 | 11-00001-010 | Resistor 1 OHM ½W ±5% | | R35 | 11-00001-102 | Resistor 1.0K OHM ¼W ±5% | | R36 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R37 | 11-00001-152 | Resistor 1.5K ¼W ±5% | | R38 | 11-00001-222 | Resistor 2.2K ¼W ±5% | | R39 | 11-00001-221 | Resistor 220 OHM ¼W ±5% | | R40 | 11-00001-332 | Resistor 3.3K ¼W ±5% | | R41 | 11-00001-562 | Resistor 5.6K ¼W ±5% | | R42 | 11-00001-223 | Resistor 22K ¼W ±5% | | R43 | 11-00001-103 | Resistor 10K ¼W ±5% | | R44 | 11-00001-103 | Resistor 10K ¼W ±5% | | R45 | 11-00001-103 | Resistor 10K ¼W ±5% | | R50 | 11-00001-472 | Resistor 4.7K 1/4W ±5% | | FB1 | 17-00001-001 | Ferrite Bead | | FB2 | 17-00001-001 | Ferrite Bead | | | 17-00001-001 | Ferrite Bead | | FB3 | / *UU\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | SYM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|--| | FB5 | 17-00001-001 | Ferrite Bead | | FB8 | 17-00001-001 | Ferrite Bead | | FB9 | 17-00001-001 | Ferrite Bead | | FB10 | 17-00001-001 | Ferrite Bead | | FB11 | 17-00001-001 | Ferrite Bead | | FB13 | 17-00001-001 | Ferrite Bead | | FB14 | 17-00001-001 | Ferrite Bead | | FB15 | 17-00001-001 | Ferrite Bead | | FB16 | 17-00001-001 | Ferrite Bead | | FB17 | 17-00001-001 | Ferrite Bead | | FB18 | 17-00001-001 | Ferrite Bead | | FB19 | 17-00001-001 | Ferrite Bead | | FB20 | 17-00001-001 | Ferrite Bead | | C1 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C2 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C3 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C4 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C5 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C6 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C7 | 12-20001-107 | Capacitor Electrolytic 100uf 16V | | C8 | 12-20001-107 | Capacitor Electrolytic 100uf 16V | | C9 | 12-20001-107 | Capacitor Electrolytic 100uf 16V | | C10 | 12-20001-107 | Capacitor Electrolytic 100uf 16V | | C11 | 12-20001-107 | Capacitor Electrolytic 100uf 16V | | C12 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C13 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C14 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C15 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C16 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C17 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C18 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C19 | 12-10003-470 | Capacitor 47pf 10% NPO Axial Lead | | C20 | 12-20001-105 | Capacitor Electrolytic 1uf | | C21 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C22 | 12-20001-807 | Capacitor Electrolytic 800uf, 16V | | C23 | 12-20001-807 | Capacitor Electrolytic 800uf, 16V | | C24 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C25 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C26 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C27 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C28 | 12-10001-471 |
Capacitor Ceramic 470pf 50V 10% Axial Lead | | 230 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | 231 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | 32 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | 33 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | 34 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | 35 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | 36 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | ## **DATA/SOUND PROCESSOR** | SYM | TAITO
Part no. | DESCRIPTION | |-----|-------------------|--| | C37 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C38 | 12-10002-104 | Capacitor Ceramic 1uf 50V Axial Lead | | C39 | 12-10001-123 | Capacitor Ceramic .012 50V Axial Lead | | C40 | 12-10001-183 | Capacitor Ceramic .018 50V Axial Lead | | C41 | 12-10004-103 | Capacitor Ceramic .01uf 50V Axial Lead | | C42 | 12-10001-332 | Capacitor Ceramic .0033uf 50V Axial Lead | | C43 | 12-10001-153 | Capacitor Ceramic .015uf 50V Axial Lead | | C44 | 12-10001-563 | Capacitor Ceramic .056uf 50V Axial Lead | | C45 | 12-10003-100 | Capacitor 10pf NPO Axial Lead | | C46 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C47 | 12-20001-105 | Capacitor Electrolytic 1uf Axial Lead | | C48 | 12-20001-105 | Capacitor Electrolytic 1uf Axial Lead | | C49 | 12-10001-471 | Capacitor Ceramic 470uf 50V Axial Lead | | C50 | 12-10001-471 | Capacitor Ceramic 470pf 50V Axial Lead | | C51 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C52 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C53 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C54 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C55 | 12-20001-105 | Capacitor Electrolytic 1uf | | C56 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C57 | 12-20001-477 | Capacitor Electrolytic 470uf, 16V | | C58 | 12-20001-477 | Capacitor Electrolytic 470uf, 16V | | C59 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C60 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C61 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C62 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C63 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C64 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C65 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C66 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C67 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C68 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C69 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C70 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C71 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C72 | 12-10003-101 | Capacitor 100pf 10% NPO Axial Lead | | C73 | 12-10003-221 | Capacitor 220pf 10% NPO Axial Lead | | C74 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C75 | 12-20001-105 | Capacitor Electrolytic 1uf | | C76 | 12-20001-105 | Capacitor Electrolytic 1uf | | C77 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C78 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C79 | 12-10002-104 | Capacitor Ceramic .1uf 50V Axial Lead | | C80 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C81 | 12-10001-471 | Capacitor Ceramic 470pf 50V 10% Axial Lead | | C83 | 12-10003-100 | Capacitor 10pf NPO Axial Lead | | TP1 | 59-00021-001 | Test Point | | TP2 | 59-00021-001 | Test Point | | | TAITO | | | | | | | |-------|----------------|--|--|--|--|--|--| | SYM | PART NO. | DESCRIPTION | | | | | | | TP3 | | Test Point | | | | | | | TP4 | 59-00021-001 | Test Point | | | | | | | TP5 | 59-00021-001 | Test Point | | | | | | | TP6 | 59-00021-001 | Test Point | | | | | | | TP7 | 59-00021-001 | Test Point | | | | | | | TP8 | 59-00021-001 | Test Point | | | | | | | TP9 | 59-00021-001 | Test Point | | | | | | | TP10 | 59-00021-001 | Test Point | | | | | | | TP11 | 59-00021-001 | Test Point | | | | | | | RP1 | 11-50001-332 | Resistor Sip Pack 3.3K | | | | | | | RP2 | 11-50001-332 | Resistor Sip Pack 3.3K | | | | | | | RP3 | 11-50001-471 | Resistor Sip Pack 47K | | | | | | | RP4 | 11-50001-471 | Resistor Sip Pack 47K | | | | | | | RP5 | 11-50001-103 | Resistor Sip Pack 10K | | | | | | | RP6 | 11-50001-332 | Resistor Sip Pack 3.3K | | | | | | | U1 | 15-20244-001 | Octal Buffer (74LS244) | | | | | | | U2 | 15-00002-001 | Microprocessor 68A09E | | | | | | | | 26-00001-040 | Socket 40P DIP-For 68A09E | | | | | | | U3 | 15-20244-001 | Octal Buffer (74LS244) | | | | | | | U4 | 15-20244-001 | Octal Buffer (74LS244) | | | | | | | U5 | 15-00007-001 | Microprocessor 6802 | | | | | | | | 26-00001-040 | Socket 40P DIP for 6802 | | | | | | | U6 | 15-20244-001 | Octal Buffer (74LS244) | | | | | | | U7 | 15-00004-002 | Parallel I/O 6821 | | | | | | | U8 | 15-00004-002 | Parallel I/O 6821 | | | | | | | U9 | 15-20245-001 | BUS Tranciever, Octal (74LS245) | | | | | | | U10 | 15-20244-001 | Octal Buffer (74LS244) | | | | | | | U11 | 15-20245-001 | BUS Tranciever, Octal (74LS245) | | | | | | | U12 | 15-20244-001 | Octal Buffer (74LS244) | | | | | | | U13 | 15-50001-001 | Digital to Analog Converter 8 Bit (1408) | | | | | | | U14 | 15-20032-001 | Quad 2-Input or (74LS32) | | | | | | | U15 | 15-10003-001 | RAM 1K x 4 NMOS Static (2114) | | | | | | | | 26-00001-018 | Socket 18P DIP for 2114 | | | | | | | U16 | 15-10003-001 | RAM 1K x 4 NMOS Static (2114) | | | | | | | | 26-00001-018 | Socket 18P DIP for 2114 | | | | | | | U17 | 15-20138-001 | Decoder 1 of 8 (74LS138) | | | | | | | U18 | 15-50003-001 | Quad OP AMP LM324 | | | | | | | U19 | 15-60004-001 | Speech Synthesis TMS5200 | | | | | | | | 26-00001-028 | Socket 28P DIP for TMS5200 | | | | | | | U20 | 15-00004-001 | Parallel I/O 68A21 | | | | | | | U21 | 15-60002-001 | Line Driver (MC1488) | | | | | | | U22 | 15-00005-002 | Serial I/O 68A50 | | | | | | | | 26-00001-024 | Socket 24P DIP for 68A50 | | | | | | | U23 | 15-20004-001 | Inverter, HEX (74LS04) | | | | | | | U24 | 15-44066-001 | Quad Analog Multiplexer (4066) | | | | | | | U25 | 15-60001-001 | Line Receiver (MC1489) | | | | | | | U26 | 15-20161-001 | Counter 4-Bit Presettable (74LS161) | | | | | | | U27 | 15-20092-001 | Counter Divide By Twelve (74LS92) | | | | | | | U28 | 15-44066-001 | Quad Analog Multiplexer (4066) | | | | | | | 1_520 | 1 10 17000 001 | and a second second | | | | | | ## DATA/SOUND PROCESSOR | SYM | TAITO
PART NO. | DESCRIPTION | | | | |-----|-------------------|-------------------------------|--|--|--| | U29 | 15-50002-001 | Audio Amplifier (2002) | | | | | | 30-00001-001 | Heatsink to 220 | | | | | U30 | 15-50002-001 | Audio Amplifier (2002) | | | | | | Heatsink to 220 | | | | | | SW1 | 29-00001-001 | Switch, DIP 4 Pole | | | | | Y1 | 19-00002-001 | Crystal 7.3728 MHZ | | | | | Q1 | 14-23904-001 | Transistor NPN, Silcon 2N3904 | | | | | J1 | 25-00002-004 | Connector 14 PIN Locking | | | | | J5 | 25-00001-001 | Connector Header 50 PIN | | | | | J6 | 25-00001-001 | Connector Header 50 PIN | | | | | J7 | 25-00002-005 | Connector 5 PIN Locking | | | | | J8 | 25-00002-005 | Connector 5 PIN Locking | | | | | J9 | 25-00003-001 | Connector RS232 | | | | #### ROM/I/O P.C. ASSEMBLY COMPONENT LAYOUT ## ROM/I/O P.C. ASSEMBLY | SYM | TAITO
PART NO. | DESCRIPTION | | | | | | |-----|-------------------|---|--|--|--|--|--| | R1 | 11-00001-562 | Resistor 5.6K, ¼W/±5% | | | | | | | R2 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R3 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R4 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R5 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R6 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R7 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R8 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R9 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R10 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R11 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R12 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R13 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R14 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R15 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R16 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R17 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R18 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R19 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R20 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R21 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R22 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R23 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R24 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R25 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R26 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R27 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R28 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R29 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R30 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R31 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R32 | 11-00001-471 | Resistor 470 0HM ¼W ±5% | | | | | | | R33 | 11-00001-471 | Resistor 470 0HM ¼W ±5% | | | | | | | R34 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R35 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R36 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R37 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R38 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R39 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R40 | 11-00001-562 | | | | | | | | R41 | 11-00001-562 | Resistor 5.6K, ¼W ±5% Resistor 5.6K, ¼W ±5% | | | | | | |
R42 | 11-00001-562 | Resistor 5.6K, 1/4W ±5% | | | | | | | R43 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | | | | | | R44 | 11-00001-302 | Resistor 470 OHM 1/4W ±5% | | | | | | | R45 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R46 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | | | | | | R47 | 11-00001-471 | | | | | | | | R49 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | R50 | | Resistor 470 OHM ¼W ±5% | | | | | | | nou | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | | | | | | SYM | TAITO
PART NO. | DESCRIPTION | |-----|-------------------|------------------------------------| | R51 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R52 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | R53 | 11-00001-562 | Resistor 5.6K, ¼W ±5% | | R54 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R55 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R56 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R57 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R58 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R59 | 11-00001-471 | Resistor 470 OHM ¼W ±5% | | R60 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R61 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R62 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | R63 | 11-00001-471 | Resistor 470 OHM 1/4W ±5% | | C1 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C2 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C3 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C4 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C5 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C6 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C7 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C8 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C9 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C10 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C11 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C12 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C13 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C15 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C16 | 12-10001-471 | Rapacitor Ceramic 470pf Axial Lead | | C17 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C18 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C19 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C20 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C21 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C22 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C23 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C24 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C25 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C26 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C27 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C28 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C29 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C30 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C31 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C32 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C33 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C34 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C35 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C36 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | ## ROM/I/O P.C. ASSEMBLY | SYM | TAITO
PART NO. | DESCRIPTION | |-----|-------------------|------------------------------------| | C37 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C38 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C39 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C40 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C41 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C42 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C43 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C44 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C45 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C46 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C47 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C48 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C49 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C50 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C51 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C52 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C53 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C54 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C55 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C56 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C57 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C58 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C59 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C60 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C61 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C62 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C63 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | €64 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C65 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C66 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C67 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C68 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C69 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C70 | 12-20001-107 | Capacitor Electrolytic 100uf | | C71 | 12-10001-471 | Capicitor Ceramic 470pf Axial Lead | | C72 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C73 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C74 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C75 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C76 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C77 | 12-10002-104 | Capacitor Ceramic .1uf Axial Lead | | C78 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C79 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C80 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C81 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C82 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C83 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C84 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | | | | |-------|-------------------|------------------------------------| | SYM | TAITO
PART NO. | DESCRIPTION | | C85 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C86 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C87 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C88 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C89 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C90 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C91 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | C92 | 12-10001-471 | Capacitor Ceramic 470pf Axial Lead | | FB1 | 17-00001-001 | Ferrite Bead | | FB2 | 17-00001-001 | Ferrite Bead | | FB3 | 17-00001-001 | Ferrite Bead | | FB4 | 17-00001-001 | Ferrite Bead | | FB5 | 17-00001-001 | Ferrite Bead | | FB6 | 17-00001-001 | Ferrite Bead | | FB7 | 17-00001-001 | Ferrite Bead | | FB8 | 17-00001-001 | Ferrite Bead | | FB9 | 17-00001-001 | Ferrite Bead | | FB10 | 17-00001-001 | Ferrite Bead | | FB11 | 17-00001-001 | Ferrite Bead | | FB12 | 17-00001-001 | Ferrite Bead | | FB13 | 17-00001-001 | Ferrite Bead | | FB14 | 17-00001-001 | Ferrite Bead | | FB15 | 17-00001-001 | Ferrite Bead | | FB16 | 17-00001-001 | Ferrite Bead | | FB17 | 17-00001-001 | Ferrite Bead | | FB18 | 17-00001-001 | Ferrite Bead | | FB19 | 17-00001-001 | Ferrite Bead | | FB20 | 17-00001-001 | Ferrite Bead | | FB21 | 17-00001-001 | Ferrite Bead | | FB23 | 17-00001-001 | Ferrite Bead | | FB24 | 17-00001-001 | Ferrite Bead | | FB25 | 17-00001-001 | Ferrite_Bead | | FB26 | 17-00001-001 | Ferrite Bead | | FB27. | 17-00001-001 | Ferrite Bead | | FB28 | 17-00001-001 | Ferrite Bead | | FB29 | 17-00001-001 | Ferrite Bead | | FB30 | 17-00001-001 | Ferrite Bead | | FB31 | 17-00001-001 | Ferrite Bead | | FB32 | 17-00001-001 | Ferrite Bead | | FB33 | 17-00001-001 | Ferrite Bead | | FB34 | 17-00001-001 | Ferrite Bead | | FB35 | 17-00001-001 | Ferrite Bead | | FB36 | 17-00001-001 | Ferrite Bead | | FB37 | 17-00001-001 | Ferrite Bead | | FB38 | 17-00001-001 | Ferrite Bead | | FB39 | 17-00001-001 | Ferrite Bead | | FB40 | 17-00001-001 | Ferrite Bead | | FB41 | 17-00001-001 | Ferrite Bead | ## **ROM/I/O P.C. ASSEMBLY** | FB42 17-00001-001 Ferrite Bead FB43 17-00001-001 Ferrite Bead FB44 17-00001-001 Ferrite Bead FB45 17-00001-001 Ferrite Bead FB46 17-00001-001 Ferrite Bead FB47 17-00001-001 Ferrite Bead FB48 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D0 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 < | |
--|--| | FB44 17-00001-001 Ferrite Bead FB45 17-00001-001 Ferrite Bead FB46 17-00001-001 Ferrite Bead FB47 17-00001-001 Ferrite Bead FB48 17-00001-001 Ferrite Bead FB49 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead FB53 17-00001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB45 17-00001-001 Ferrite Bead FB46 17-00001-001 Ferrite Bead FB47 17-00001-001 Ferrite Bead FB48 17-00001-001 Ferrite Bead FB49 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D13 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB46 17-00001-001 Ferrite Bead FB47 17-00001-001 Ferrite Bead FB48 17-00001-001 Ferrite Bead FB49 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D13 13-14001-001 Diode IN4001 D14 13-14001-001 Diode IN4001 D15 13-14001-001 Diode IN4001 D16 13-14001-001 Diode IN4001 D17 13-14001-001 Diode IN4001 D18 13-14001-001 Diode IN4001 D19 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Transistor NPN DarlingtonTIP120 D2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB47 17-00001-001 Ferrite Bead FB48 17-00001-001 Ferrite Bead FB49 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D13 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB48 17-00001-001 Ferrite Bead FB49 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB49 17-00001-001 Ferrite Bead FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 D13 14-00001-001 Transistor NPN DarlingtonTIP120 D2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB50 17-00001-001 Ferrite Bead FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB51 17-00001-001 Ferrite Bead FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB52 17-00001-001 Ferrite Bead FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | FB53 17-00001-001 Ferrite Bead D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D1 13-14001-001 Diode IN4001 D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D2 13-14001-001 Diode IN4001 D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D3 13-14001-001 Diode IN4001 D4 13-14001-001 Diode IN4001 D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D4 13-14001-001 Diode IN4001 D5 13-14001-001
Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D5 13-14001-001 Diode IN4001 D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D6 13-14001-001 Diode IN4001 D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D7 13-14001-001 Diode IN4001 D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D8 13-14001-001 Diode IN4001 D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D9 13-14001-001 Diode IN4001 D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D10 13-14001-001 Diode IN4001 D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D11 13-14001-001 Diode IN4001 D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | D12 13-14001-001 Diode IN4001 Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q1 14-00001-001 Transistor NPN DarlingtonTIP120 Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q2 14-00001-001 Transistor NPN DarlingtonTIP120 | | | | | | | | | Q3 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q4 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q5 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q6 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q7 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q8 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q9 Not Used | | | Q10 14-00001-001 Transistor NPN DarlingtonTIP120 | | | Q11 14-00001-001 Transistor NPN DarlingtonTlP120 | | | Q12 14-00001-001 Transistor NPN DarlingtonTIP120 | | | U1 Not Used | | | 26-00001-014 Socket 14P Dip, for U1 | | | U2 15-20138-001 Decoder 1 of 8 (138) | | | U3 Not Used | | | 26-00001-024 Socket 24 Pin Dip for U3 | | | U4 Not Used | | | 26-00001-024 Socket 24 Pin Dip for U4 | | | U5 Not Used | | | 26-00001-024 Socket 24 Pin Dip for U5 | | | SYM | TAITO
PART NO. | DESCRIPTION | |---------------|-------------------|------------------------------------| | U6 | | Not Used | | | 26-00001-024 | Socket 24 Pin Dip for U6 | | U7 | | Not Used | | | 26-00001-024 | Socket 24 Pin Dip for U7 | | U8 | | Not Used | | | 26-00001-024 | Socket 24 Pin Dip for U8 | | U9 | 20 00001 021 | Not Used | | | 26-00001-024 | Socket 24 Pin Dip for U9 | | U10 | 20 00001 024 | Not Used | | | 26-00001-024 | Socket 24 Pin Dip for U10 | | U11 | 15-00004-001 | Paralell I/O 68A21 | | U12 | 13-00004-001 | E-PROM "ZOOKEEPER" | | 012 | 26-00001-024 | Socket 24 Pin Dip for U12 | | U13 | 20-00001-024 | Not Used | | 010 | 26-00001-024 | | | U14 | 20-00001-024 | Socket 24 Pin Dip for U13 | | 014 | 00 00004 004 | E-PROM "ZOOKEEPER" | | la c | 26-00001-024 | Socket 24 Pin Dip for U14 | | U15 | 00 00004 004 | E-PROM "ZOOKEEPER"™ | | | 26-00001-024 | Socket 24P Dip Used ForE-PROM | | J16 | | E-PROM "ZOOKEEPER"™ | | | 26-00001-024 | Socket 24 Pin Dip for U16 | | J17 | | E-PROM "ZOOKEEPER"™ | | | 26-00001-024 | Socket 24 Pin Dip for U17 | | J18 | | E-PROM "ZOOKEEPER"™ | | | 26-00001-024 | Socket 24 Pin Dip for U18 | | J19 | | E-PROM "ZOOKEEPER"™ | | | 26-00001-024 | Socket 24 Pin Dip for U19 | | J20 | 15-00004-001 | Paralell I/O 68A21 | | J21 | 15-20138-001 | Decoder 1 of 8 (138) | | J22 | 26-00002-032 | ROM Select | | | 26-00001-014 | Socket 24P Dip for U22 | | J23 | 15-20004-001 | Inverter, HEX (74LS04) | | J24 | | Not Used | | J25 | | E-PROM "ZOOKEEPER"™ | | J26 | | E-PROM "ZOOKEEPER"™ | | J27 | | E-PROM "ZOOKEEPER"™ | | | 26-00001-014 | Socket 24P Dip for U27 | | J28 | 15-20138-001 | Decoder 1 of 8 (138) | | 129 | 26-00002-032 | ROM Select | | | 26-00001-014 | Socket 14P Dip Used For ROMSelect | | 130 | 15-00004-001 | Paralell I/O 6821 | | 3 | 25-00001-001 | Connector Header 50PIN | | 5 | 25-00001-001 | Connector Header 50PIN | | 6 | 25-00001-001 | Connector Header 50PIN | | | 25-00001-001 | | | | 25-00002-014 | Connector 14 Pin Header .156Center | | 13 I | 20-00002-014 I | Connector 14 Pin Header .156Center | | $\overline{}$ | 25-00002-014 | Connector 14 Pin Header .156Center | ## **VIDEO ROM EXPANSION BOARD** | ITEM | TAITO
PART NO. | DESCRIPTION | |------|-------------------|---------------------------| | 1 | 32-00220-001 | 6809 Video ROM P.C.B. | | 2 | 25-00001-001 | Conn Header Vert, 50 pin | | 3 | 25-00002-014 | Conn 14 Pin Locking | | 4 | 26-00001-024 | Socket Dip 24 Pin | | 5 | 17-00001-001 | Ferrite Bead | | 6 | 12-20001-107 | Cap Elect 16V 100uf | | 7 | 15-20138-001 | Decoder 1 of 8 74LS138 | | 8 | 15-20074-001 | Flip Flop Dual D 74LS74 | | 9 | 15-20157-001 | MIti Quad 2 Input 74LS157 | | 10 | 15-20000-001 | Quad 2 Input Nand 74LS00 | | 11 | 11-00001-332 | Resistor 3300 ohm ¼W 5% | | 12 | 12-10001-471 | Cap 470PF 50V 10% X7R AXL | | 13 | 12-10002-104 | Cap Cer .1uf 50V | ## **VIDEO ROM EXPANSION BOARD** #### **COIN PROCESSOR BOARD LAYOUT** #### **COIN PROCESSOR BOARD SCHEMATIC** ## **WIRING DIAGRAM** | | A | T |) <i>]</i> ,, | 756 Estes A | venue, Elk | ORPORAT
Grove Village,
00 Telex 25-3 | IL 60007 | |-----------|----------|-----------|---------------|-------------|------------|--|----------| | UMLESE O | HERWINE | BPECIFIED | Inches | DRAWN BY | | DATE | SCALE | | DOM. TOL. | inches. | | | APPROVED BY | | DATE | 7 | | XXX. | \simeq | X | POU | JER S | iu PPLi | ASSE | MBLY | | hates | | | AND HOT BEALT | USED ON | SIZE DRAY | **** | 244 | | traction | | _ | (4) | | | | 110 |